
Value Analysis Report

SR 101 Roadway Stabilization

01-324700-Del Norte-101 PM 15.0/15.6 (KP 24.0/25.0)

Contract No. 53A0020 Task Order No. 183

October 2002

Prepared by Value Management Strategies, Inc.

Frederick Kolano, CVS Senior Value Engineer

January 10, 2003

To: All Recipients of Final Value Analysis Report for the SR 101 Roadway Stabilization Project

Value Management Strategies, Inc. is pleased to transmit this Final Value Analysis Study Report for the referenced project. These copies are intended for individuals shown on the distribution list at the front of the report. Please distribute these copies as soon as possible.

This concludes the VA study activities for this project.

If you have any questions or comments concerning the final report, please contact me at (970) 242-5531.

Sincerely,

Fred Kolano, CVS

Value Management Strategies, Inc.

Distribution List

Preliminary VA Study Report

SR 101 Roadway Stabilization

VA Team (9 Copies)

- 1. Dan Adams Caltrans Structures Design
- 2. Gary Garofalo Caltrans Geotechnical
- 3. Deborah Harmon Caltrans Environment Planning
- 4. Michael Eagan Caltrans Planning
- 5. Jon Kaneshiro Parsons Environmental Science*
- 6. Susan Morrison Del Norte Local Transportation Commission
- 7. Aida Parkinson Redwood National/State Parks
- 8. Michael Stapleton Caltrans Project Engineer
- 9. Doug Jackson Caltrans Structures Construction Engineer

Project Development Team (18 + 4 Extra = 22 Copies)

- 1. Gary Banducci Caltrans Project Manager
- 2. Dennis McBride Caltrans Design Manager
- 3. John Carson Caltrans District 1 Traffic Operations
- 4. Starr Killian Caltrans Right-of-Way
- 5. Ralph Martinelli Caltrans–District 1 Traffic Operations Branch
- 6. Ernie Perry Del Norte County Community Development
- 7. Jim Siebert –
- 8. Chris Wills California Division of Mines and Geology
- 9. Steve Wiman Caltrans ESC Structures Design
- 10. Rich Thompson Caltrans ESC Structures Engineering
- 11. Rick Knapp Caltrans District 1 Director
- 12. Marty Van Zandt Caltrans District 1 Deputy Director, Maintenance & Operations
- 13. Cheryl Willis Caltrans District 1 Deputy Director, Planning
- 14. Charlie Fielder Caltrans District 1 Deputy Director, Program / Project Mgmt
- 15. Mark Suchanek Program Manager
- 16. Barry Tippin Caltrans North Region Design
- 17. Terry Davis Caltrans Maintenance
- 18. Ron Den Heyer Caltrans District 1 Construction

VA Coordinator (1 Copy)

1. Oscar Vasquez - Caltrans District 1 Value Analysis Coordinator

External Stakeholders (7 Copies)

- 1. Ilene Cooper Friends of Del Norte County
- 2. David Finigan Del Norte County Board of Supervisors
- 3. Jerry Hanson California Trucking Association
- 4. Ruskin Hartley Save the Redwoods League
- 5. Richard C. Sermon US Dept. of Interior, CA Dept. of Parks & Recreation, Redwood National & State Parks, State Parks Superintendent
- 6. Andrew T. Ringgold US Dept. of Interior, CA Dept. of Parks & Recreation, Redwood National & State Parks, National Park Superintendent
- 7. John Kolb North Coast Redwoods District, Superintendent Dept. of Parks & Recreation

Headquarters VA Branch (1 Copy)

1. Earl Burgess – Caltrans*

Table of Contents

1. TABLE OF CONTENTS

2. EXECUTIVE SUMMARY

Synopsis Introduction Project Description Project History Project Issues Project Analysis Results of the VA Study VA Alternatives Rationale for Cumulative Performance Rating of Accepted Alternatives Performance and Value Improvements Performance Rating Matrix

3. VA STUDY SUMMARY REPORT

Introduction VA Study Identification & Charter VA Study Participants and Schedule VA Study Proposed Alternatives VA Study Accepted Alternatives VA Study Benefit Summary

4. VALUE ANALYSIS ALTERNATIVES

Introduction VA Alternatives Alternative Sets Summary of VA Alternatives VA Alternatives

5. PROJECT ANALYSIS

Summary of Analysis Project Issues and Constraints Lessons Learned on Site Visit Cost Model Function Analysis / FAST Diagram Performance Criteria Matrix, Including Definitions and Rating Scales Performance Rating Matrix – Proposed Alternatives Performance Rating Matrix – Accepted Alternatives

6. PROJECT DESCRIPTION

Introduction Project History Information Provided to the VA Team Project Constraints/Paradigm Shifts

7. IDEA EVALUATION

Introduction Key Evaluative Criteria Evaluation Process Idea Evaluation Forms

8. VALUE ANALYSIS PROCESS

Introduction Preparation VA Study Report VA Study Activity Chart Caltrans VA Performance Methodology VA Study Agenda Meeting Attendees

Executive Summary

SYNOPSIS

This Value Analysis (VA) Study addressed the unstable SR 101 roadway in Del Norte County between PM 15.0 to 15.6 (KP 24.0/25.0), commonly referred to as the "Last Chance Grade." This segment of SR 101 traverses State and National Parks and is the major transportation link between Humboldt and Del Norte Counties. The roadway requires high maintenance and experiences frequent traffic disruptions due to deep-seated and shallow landslides.

Caltrans initiated this VA Study to identify alternatives to the 1995 Project Study Report (PSR), which addressed the above-mentioned problems. The scope of the VA Study was limited to the existing highway corridor, with special focus on minimizing the park right-of-way takes and minimizing impacts to old growth trees.

The 1995 PSR identified four PSR Alternatives. The PSR alternatives are to (1) Realign the highway in a tunnel behind the slide plane; (2A) Minor roadway realignment, and stabilize with a soldier pile tieback wall and slope stressing; (2B) Minor roadway realignment and stabilize with two soldier pile tieback walls; and (3) Major retreat behind the slide plane involving a through-cut. Each of these PSR Alternatives had a significant deficiency. This PSR was initiated as a result of joint concerns of Caltrans, the Del Norte Local Transportation Commission, and the public. PSR Alternative 2B was designated as the baseline against which the VA alternatives were evaluated.

The VA team identified three VA alternatives. The Project Development Team accepted VA Alternative 2.0. This alternative focused on constructing retaining walls that only address specific terrain instability locations. The performance of the alternative (based on the original concept and rated using a set of six performance measures) increased by 44%. Minimal right-of-way takes, combined with significantly less environmental impacts, resulted in this improvement. In addition, this alternative which could cost approximately \$5,900,000, will save approximately \$39,000,000 from the original concept project cost, because the length of retaining walls is significantly less than proposed in the original concept. The combination of improved performance and cost savings resulted in a value improvement for the accepted VA alternative of nearly 1000%.

Because the deep-seated slide cannot be stabilized by reasonable means, this VA alternative is not a complete fix to the terrain instability problems. However, it is acceptable to stakeholders and the National and State Parks. The accepted VA alternative would also be easier to program than the original concept; therefore, it can be constructed sooner.

EXECUTIVE SUMMARY

INTRODUCTION

This VA Report summarizes the VA Study initiated by Caltrans District 1 and facilitated by Value Management Strategies, Inc. The subject of the study was SR 101 Roadway Stabilization from PM 15.0 to 15.6 (KP 24.0/25.0).

• 01-324700-Del Norte-101 PM 15.0/15.6 (KP 24.0/25.0)

The documents provided to the VA team included the 1995 PSR, the 2001 Preliminary Geotechnical Report, aerial photographs, and other technical data prepared by Caltrans District 1 representatives.

PROJECT DESCRIPTION

This purpose of this project is to identify and propose recommendations to mitigate operational deficiencies currently experienced on SR 101 from PM 15.0 to 15.6. The purpose was also to consider deficiencies experienced in the longer segment from PM 12.5 to 15.6. The proposed project is required to ensure the roadway will remain open to vehicular traffic. It was initiated as a result of joint concerns of Caltrans, the Del Norte Local Transportation Commission, and the public. The proposed project would be funded under the HA42 (Protective Betterment) Program.

SR 101 is a major transportation route of interregional and interstate importance. It is considered the "lifeline" of the North Coast, providing the connection between the Northern California Coast and the populated San Francisco Bay Area to the south, and Oregon to the north. SR 101 facilitates many important types of transportation, including tourism, emergency services, and transportation of goods to, from, and through the region. It is part of the National Highway System and is also a part of the Subsystem of Highways for Extra Legal Loads.

This segment of SR 101 has historically required significant maintenance effort to avoid road closure. The longer segment (PM 12.5 to 15.6) has been subject to traffic control for an average of 1,068 hours per year (12% of the time) over the past 10 years. The District has expended an average of approximately \$60,000 per year on the shorter segment (PM 15.0 to 15.6) and approximately \$640,000 per year for the longer segment (PM 12.5 to 15.6). During wet conditions settlement occurs, which requires frequent inspection and repair of the roadway. The long-term results of the settlement are poor vertical alignment and a rough ride for the traveling public. This segment of the roadway (PM 15.0 to 15.6) requires night monitoring during wet weather to provide timely response to abrupt settlement. It is anticipated that maintenance expenditures and the likelihood of another roadway closure would increase over time.

Geotechnical experts suggest that two types of catastrophic failure events are possible in the project area. One is caused by a major earthquake and the other by significant rainfall; either of these events could cause an estimated 3 to 10 feet of movement by activating the deep-seated failure plane. These effects would likely be major disruption of vehicular traffic, including a full roadway closure of at least one to two weeks. Lesser events, more typically caused by rainfall, have resulted in movements of 2-6 inches of movement estimated, causing disruptions for one or more days.

This section of SR 101 was constructed on the west-facing flank of a 300-meter high (1,000-foot) ridge, bounded on the west by the Pacific Ocean and on the east by Wilson Creek. The project is surrounded by the Del Norte Coast Redwoods State Park boundaries. Existing right-of-way widths vary throughout the project site.

The section of SR 101 proposed for reconstruction is a two-lane conventional highway with 3.6-meter (12-foot) wide lanes, and alignment is generally curvilinear. Vertical alignment is rolling, with a maximum grade of approximately 7%. The existing and future (2010) level of service is E.

PROJECT HISTORY

Stabilizing the roadway at the Last Chance Grade (PM 15.0/15.6) would be a Major Project (i.e., using Caltrans Programming Criteria such as costing more than \$750,000). Projects exceeding \$750,000 are eligible for programming in the State Highway Operations and Protection Program (SHOPP). A SHOPP project can be rehabilitation, a protective betterment, or an operational improvement; it cannot be capacity increasing or a new facility. Capacity increasing and/or new facilities projects are eligible for programming in the State Transportation Improvement Program (STIP).

The original project encompassing the location at the Last Chance Grade was referred to as the "Wilson Creek Bluffs" project, and it was initiated in 1987 to address nine areas of identified roadway instability. This project studied bypass alternatives between PM 12.5 and 16.5. An eastern bypass alternative was programmed in the 1992 STIP as a "long lead", not including construction funding. Due in part to impacts to parklands and old growth trees, and a lack of support from regulatory agencies and conservancy groups, this project was un-programmed in 1993.

A Corridor Study on SR 101 was initiated following programming of the Wilson Creek Bluffs project in the 1992 STIP. The Corridor Study considered all of SR 101, but it focused primarily on the section from PM 12.5 to 22.5. This study considered the cumulative impacts to parklands and old growth trees from both the Wilson Creek Bluffs project and a separate bypass project being studied at Cushing Creek (between PM 20.5 and 22.5). The Corridor Study identified an alternative that would avoid all parklands. This alternative was determined to consist of a 17-mile bypass with a cost of \$580 million. Based upon the results of this study, the Wilson Creek Bluffs project was removed from the 1992 STIP (unprogrammed), and it was proposed to study SHOPP projects within the existing alignment that would address stabilizing the roadway. The section of SR 101 at the Last Chance Grade was considered the highest priority due to the slide complex containing five of the nine unstable areas. Studies to address this area were initiated in 1993, and a Project Study Report was completed in February 1995.

The current PSR for this project was approved in February 1995. It is classified as a long-lead SHOPP project. It has four alternatives: (1) Realign the highway in a tunnel behind the slide plane; (2A) Minor roadway realignment, and stabilize with a soldier pile tieback wall and slope stressing; (2B) Minor roadway realignment and stabilize with two soldier pile tieback walls; and (3) Major retreat behind the slide plane. In an effort to determine if the alternatives were feasible, a geotechnical study was initiated in mid-1998. Actual field investigations and engineering analyses were performed in 1999 and 2000. A final Geotechnical Report was prepared in May 2001. The geotechnical report concluded that the PSR Alternative 3, the through cut, was the only alternative that could be expected to be successful in addressing the deep-seated slide. Unfortunately, the impacts to park lands would be unacceptable.

The estimated project cost of the baseline PSR Alternative 2B minor roadway alignment and stabilize with two solder tieback walls is approximately \$45,000,000.

PROJECT ISSUES

This VA study was assembled to identify alternatives to the 1995 PSR. The VA team was asked to limit their alternatives to the present Caltrans right-of-way within the corridor.

The following items were identified and addressed by the VA team:

- Potential impacts to Redwood trees
- Potential impacts to park lands within the corridor
- Short-term and long-term roadway stabilization
- Staying within Caltrans right-of-way

PROJECT ANALYSIS

The VA Study started with introductions of VA team members, Project Development Team members, and external stakeholders. Next, an overview of the project was conducted. The participants were then asked to identify, define, and rank performance criteria that would be used during the VA Study to measure an idea's impact on the criteria. Following this, the projects original concept was ranked against the performance criteria.

The VA team then discussed the project costs and analyzed the functions of the project. This led to brainstorming of value mismatches and the identification of approximately 60 ideas. Evaluation of each idea involved clarifying the idea, determining the idea's impact on the project's performance criteria, listing the idea's advantages and disadvantages, and determination of the idea's potential for cost savings or added cost. This analysis was concluded with an overall rank for the idea. Highly ranked ideas were designated as VA alternatives and were documented. The documentation included a description of the present and proposed concept, advantages and disadvantages, sketches, an evaluation of the alternative's impact on the project's performance criteria, and a detailed cost evaluation.

The FAST Diagram for this project shows *Access Counties* as the basic function. Key secondary functions used for brainstorming were *Align Roadway, Increase Road Stability,* and *Maintain Highway.* In several cases the project costs and performance criteria associated with the functions have been identified. This enabled the team to determine the relationship between the project functions and cost, and to confirm that the performance criteria are being satisfied.

The VA Team developed three VA alternatives for improvement of the project. The alternatives focused on two different ways to approach the slope instability problems. The third focused on a contingency plan that would allow for immediate response to a slope slippage. In addition, the team identified seven alternatives that were considered out of the VA Study Scope. These were developed to ensure that all possible options related to the slope instability were documented.

It is important to note that PSR Alternative 2B, the baseline used for the VA Study, was found to be incapable of resisting the forces of the deep-seated slide on which the roadway rests. VA Alternatives 1.0 and 2.0 are similar to Alternative 2B in the respect that they incorporate walls above and below the roadway, but at an incrementally reduced scope. They do provide a level of resistance to the shallower movement; however, not enough to resist the forces of the deep-seated slide. Because PSR Alternative 2B does not offer any economic advantage, it did not receive further consideration except to serve as the baseline for the VA Study.

A description of the accepted alternative and reasons for the rejection of the other two alternatives are described below. Summary lists of the VA alternatives and documentation of each VA alternative can be found in the Value Analysis Alternatives section of this report.

RESULTS OF THE VA STUDY

The Project Development Team accepted VA Alternative 2.0. This alternative will provide considerable performance improvement over the original concept (44%) related to less need for right-of-way takes and considerably less environmental disturbance. In addition, the accepted alternative will save approximately \$39,000,000 from the original concept.

This conclusion was presented to the National and State Parks, the Del Norte Local Transportation Commission and Caltrans District 1 management. These organizations concurred with the conclusion. This activity demonstrated the usefulness of the value analysis approach toward developing consensus among organizations involved with the project area.

During the VA Study, the team identified seven "out of VA scope" alternatives. These were considered out of scope because they were not in or very close to the Caltrans right-of-way. These alternatives focused on bypass and tunnel alignments. Using these out of scope alternatives as a base, the Project Development Team performed further investigations and analysis of the bypass alignments to determine if a feasible alignment could be identified. The result of this analysis was that all bypass alignments that were studied had significant negative environmental impacts related to severe disturbance to the terrain and Redwood trees. Therefore, none were considered feasible.

Note: Cost estimates and Potential Savings do not include maintenance costs which may have a slight change on performance.

Accepted VA Alternative

Alt. No.	Description	Potential Savings (Added Cost)	Performance
2.0	Construct Retaining Walls that Only Address Specific Terrain Instability	\$39,030,000	44%

This VA alternative proposes to construct maintenance tieback soldier pile walls below the roadway to resist lateral shallow slope instabilities in areas of poorly consolidated materials with transverse and longitudinal cut-off drainage structures. Soil nail walls will be used along the slopes above the roadway to retain slide mass. Ditches above and behind the wall crest would capture upslope surface runoff and cross drains would convey the water downslope. This proposal is about one-third the length of the original concept proposal.

Rejected VA Alternatives

Alt.

No.	Description
-----	-------------

Reason for Rejection

Alt. No.	Description	Reason for Rejection
1.0	Construct Retaining Walls Throughout the Project Limits	This alternative does not resolve slope instability issues and would have more environmental consequences than VA Alternative 2.0. This alternative is rejected in favor of VA Alternative 2.0
3.0	Augment the Present Maintenance Program with a Contingency Plan to Accelerate Road Damage Repairs on the Existing Alignment	This alternative does not resolve slope instability issues. The project decision makers agreed that the contingency plan concept be forwarded to the District Maintenance organization as a best management practice to be applied to the project area.

RATIONALE FOR CUMULATIVE PERFORMANCE RATINGS OF THE ACCEPTED ALTERNATIVE

Performance Criteria	Accepted Alternative
Right-of-Way	Significant improvement related to little or no additional right-of-way needed to construct the accepted VA alternative.
Maintainability	Slight reduction because of limited ability to clear slide debris.
Environmental Impacts	Considerable improvement because of minimal impact to natural resources, including Redwood trees, and considerably less terrain disturbance than the original concept.
Aesthetics	Minimal or no change because existing views are maintained. Also, retaining walls can be designed with visual textures to minimize undesirable contrast.
Roadway Geometrics	Slight reduction because no alignment improvements are proposed in the accepted VA alternative.
Constructibility	Some improvement over the original concept, because a much shorter retaining wall length will be constructed.

PERFORMANCE AND VALUE IMPROVEMENTS

Value improvement is measured by the ratio of performance to cost. To establish value improvement, the accepted VA alternative is ranked against all of the project's performance criteria. This is done by the team assigning a score of 1 to 10 (10 is most desirable) for the VA set's performance against each of the

six performance criteria. Each score is multiplied by the weight of the appropriate performance criterion, and then summed to determine a total performance score.

The Performance Rating Matrix is shown on the following page.

PERFORMANCE MATRIX

SR 101 Roadway Stabilization

Caltrans

Criteria	Unit of	Criteria	Generat	Performance Rating					Total Performance					
Criteria	Measurement	Weight	Concept	1	2	3	4	5	6	7	8	9	10	Total Performance
			No Build										10	290
			Baseline				4							116
Right-of-Way	Degree of Impact	29	Accepted Alt.								8			232
														0
														0
			No Build	1										24
			Baseline						6					144
Maintainability	Degree of Impact	24	Accepted Alt.					5						120
														0
														0
			No Build								8			136
Euroiman entel			Baseline			3								51
Environmental Impacts	Degree of Impact	17	Accepted Alt.									9		153
impacts														0
														0
			No Build					5						60
Aesthetics	Degree of Impact	12	Baseline						6					72
			Accepted Alt.						6					72
														0
														0
D 1	Degree of Impact		No Build			3								27
			Baseline							7				63
Roadway Geometrics		9	Accepted Alt.						6					54
Geometrics														0
														0
			No Build										10	90
			Baseline		2									18
Constructibility	Degree of Impact	9	Accepted Alt.				4							36
														0
														0
														0
														0
														0
														0
														0
				1	1						1			

OVERALL PERFORMANCE	Total Performance	Total Cost (\$ mil)	Value Index (Performance/Cost)	% Value Improvement
No Build	627	\langle	\langle	\geq
Baseline	464	45.0	10.31	$\left< \right>$
Accepted VA Alternative 2.0	667	5.9	113.05	996%

VA STUDY SUMMARY REPORT

VALUE ANALYSIS STUDY SUMMARY REPORT

INTRODUCTION

The Value Analysis Study Summary Report (VASSR) is a seven-page form used by the Caltrans VA Program Administrators for auditing and reporting purposes. The summary report is filled out portion by portion as the VA study progresses, and is submitted as part of the Final VA Study Report. If there are conditionally accepted alternatives after the Implementation Meeting, the VA Team Leader will follow-up with the Project Manager and DVAC on a regular basis to conclude the VA Study. Once the dispositions of the conditionally accepted VA alternatives are finalized, the VASSR and Executive Summary are updated and provided to the Caltrans HQ VA Branch for reporting in the Annual VA Program, and the VA Study activities are completed.

The VASSR includes:

VA Study Identification / Charter

The Project Manager and DVAC originally developed this page to initiate the project. It provides basic information to identify the project, a narrative description of the project, the need and purpose for the project, and the purpose of the VA Study. The information is updated during the VA Study be the VA Team Leader.

Participants and Schedule

This page identifies the VA team and other key participants involved in the VA Study. The schedule of key events is also listed on this page.

VA Study Proposed Alternatives

All VA alternatives are listed with their potential cost and performance changes. The VA team establishes sets of selected VA alternatives to provide reviewers guidance and added understanding of how the alternatives can fit together into a solution for the project. The sets and their cost, performance, and value changes are listed on this page. Cost savings and cost increases are totaled separately.

VA Study Accepted Alternatives

Accepted VA alternatives are listed with their validated cost and performance changes. The total impact of the accepted VA alternatives is determined and the cost, performance, and value changes are listed on this page. Note: the total cost or performance change is not necessarily the sum of the accepted VA alternatives, as there may be overlapping or synergistic effects of combining certain VA alternatives. Cost savings and cost increases are totaled separately.

VA Study Conditionally Accepted Alternatives (Page 1)

If, after the Implementation Meeting, there are conditionally accepted VA alternatives, they are listed on this page, and their information is summarized similar to the accepted VA alternatives. Note the cost and performance change associated with the conditionally accepted VA alternatives are determined with respect to the design with the VA alternatives that have already been accepted. *If there are no conditionally accepted VA alternatives, this page is deleted from the VASSR.*

VA Study Conditionally Accepted Alternatives (Page 2)

This page documents the impact of conditionally accepted alternatives on the performance rating of accepted alternatives. How much the performance rating changes for each criterion and the rationale for that change are detailed. This provides the necessary back-up to properly validate the performance change of any combination of conditionally accepted alternatives that may be accepted at a later date. In many cases, several years may pass before final disposition is made, and having this information well documented supports proper assessment and validation of performance changes. *If there are no conditionally accepted VA alternatives, this page is deleted from the VASSR.*

VA Study Benefits

This page includes information related to VA Study costs, VA alternative acceptance rate, return-oninvestment calculations, and a narrative of the VA Study benefits.

The information in the VASSR is preliminary if conditionally accepted VA alternatives are noted. When the conditionally accepted VA alternatives are resolved, the VASSR will be modified to show the final results of the VA Study.

Proiec	t Name: SR 101 F		FICATION &				Caltrans	
iiojee		•		CATTO				
<u> </u>								
Contr		District	County		Route	КР	EA	
53A00	063 204.183	1	Del Norte		101	15/15.6	01-324700	
			STUDY	ΤΥΡΕ				
	Highway	Х	Process			Product		
NH	S Mandated?	X						
			ANNUAL VA	PROG	RAM			
Study	listed on District V	/A Annua	Program? (Y	/N)			Y	
		KEY	PROJECT MI	LESTO	NE DAT	TES		
мооо	Identify N	eed:		M260	Sk	eleton Layout:		
M010	Approve	PID:		M380		Project PS&E:		
M015	Program Pro	ject:		M500	Арр	orove Contract:		
M020	Begin Environme	ntal:						
M100	Approve I	DPR:		Current WBS Activity:			Start Date:	
M200	PA	&ED:						
Capita	l Outlay Support C	osts:		\$0				
•	ited Right of Way			\$0				
	ited Project Const		ost:	\$45,00	0,000			
		P	ROJECT PURP	OSE a	nd NEE	D		
vehic unsta result from identi	project is needed to ular traffic. This lo ble locations on this in closure of this j the rest of the Stat ified by the District N one slide complex a vistrict to Del Norte	ocation ha s segment portion of ce. The p Materials E nd would	s been identified of Route 101. I Route 101 with urpose of this p ingineer as show need to be addre	d by the f action no deto roject is ing majo essed as	e District is not ta our avail to addr or distres one pro	as the highest ken, further slide able, cutting Del ess five of nine r s. All five locatic ject. A commitm	priority of all the movement could Norte County off roadway locations ons are associated ent was made by	
the D	xisting roadway.							
the D		VA ST	UDY PURPOS	E and	ОВЈЕСТ	TIVES		

VA	STUDY PARTICIPANTS and	d SCHEDULE		Caltrans		
Project Name:	SR 101 Roadway Stabilization	۱				
Name	Organization	Discipline/ Position		Phone/ Email		
Fred Kolano	Value Management Strategies, Inc.	Team Leader	(970) 242 fred@vms			
Dan Adams	Caltrans - HQ	Structures Engineer	(916) 227 dan_t_ad	7-8358 ams@dot.ca.gov		
Mike Eagan	Caltrans	D-1 Transportation Planning	(707) 441 mike_eag	L-3937 Jan@dot.ca.gov		
Gary Garofalo	Caltrans	Geotechnical	(916) 227 gary_gar	7-7190 ofalo@dot.ca.gov		
Deborah Harmon	Caltrans	Chief, Environmental Management		(707) 445-6416 deborah_harmon@dot.ca.gov		
Doug Jackson	Caltrans	Resident Engineer		(707) 825-0195 doug_jackson@dot.ca.gov		
Jon Kaneshiro	Parsons Transportation Group	Consultant/Tunnel Design	(916) 678 jon.y.kan	3-0400 eshiro@parsons.com		
Susan Morrison	Del Norte County Local Transportation Commission	Director	(707) 465 morrison(5-3878 @delnortemail.com		
Aida Parkinson	Redwood National/ State Parks	Environmental Specialist	(707) 882 aida_park	2-7611 kinson@nps.gov		
Mike Stapleton	Caltrans	D-1 Design	(707) 445 mike_sta	5-6453 pleton@dot.ca.gov		
Oscar Vasquez	Caltrans	VA Coordinator	(916) 274 part@vms	1-6111 sstudy.com		
Chris Wills	California Division of Mines & Geology	Engineering Geologist	(916) 323 cwills@co	3-8553 nsrv.ca.gov		
Gary Banducci	Caltrans	Project Manager	(707) 445 gary_ban	5-6440 ducci@dot.ca.gov		
Tim Boese	Caltrans - D 1 Traffic Operations		(707) 445 timothy_l	5-6689 _boese@dot.ca.gov		
Ilene Cooper		Friends of Del Norte County				
Ruskin Hartley	Save the Redwoods League	Conservation Planner	(415) 362 rhartley@	2-2352 savetheredwoods.org		
Starr Kilian	Caltrans - D-1 Right-of-Way	Right-of-Way Agent	(707) 445 starr_kilia	5-6423 an@dot.ca.gov		
Dennis McBride	Caltrans	Design Manager	(707) 441 dennis_m	L-5878 cbride@dot.ca.gov		
John Carson	Caltrans	D-1 Traffic Operations	(707) 445 john cars	5-6733 son@dot.ca.gov		

David Finigan		County Board of			(707) 464-720		
	Supervisors	5			dfinigan@harb	orshore.com	
Jerry Hansen	California T Association	alifornia Trucking ssociation			(707) 279-910 jhansen@xprs.		
Ralph Martinelli	Caltrans		D-1 Traffic Safety Brar	nch	(707) 445-637 Ralph_Martine		
Ernie Perry	Del Norte C Developme	County Community nt	Director		(707) 464-725 eperry@co.del		
Chris Wills	California Division of Mines & Geology		Engineering Geologist]	(916) 323-855 cwills@consrv.		
Dennis McBride	Caltrans		Design Mar	lager	(707) 441-587 dennis_mcbrid		
Gary Banducci	Caltrans		Project Manager		(707) 445-6440 gary_banducci@dot.ca.gov		
Charles Fielder	Caltrans - Program/Project Management		Deputy Dis Director PP		(707) 445-649 charles_fielder		
Rick Knapp	Caltrans		District Dire	ector	707-445-6445 Rick_Knapp@c		
Martin Van Zandt	Caltrans - Maintenance and Operations		Deputy District Director Maintenance and Operations		(707) 445-6393 martin_van_zandt@dot.ca.gov		
Cheryl Willis	Caltrans –	D-1	Deputy District Director - Planning		(707) 445-6413 cheryl.willis@dot.ca.gov		
		VA STL	IDY SCHEE	DULE			
Meeting	j	Dates			Times	Location	
VA Study Report - F	Preliminary	1/1/1900 - 1/1/19	900			-	
, , , -	,					1	

VA Study Report - Preliminary	1/1/1900 - 1/1/1900		
Pre-Study Meeting	8/14/2001 - 8/14/2001	8:00 am - 11:00 am	District 1 Room 59
VA Study Segment 1	8/21/2001 - 8/23/2001	8:00 am - 5:00 pm	District 1 Room 59
VA Study Segment 2	8/28/2001 - 8/30/2001	8:00 am - 5:00 pm	District 1 Room 59
VA Study Segment 3	9/25/2002 - 9/26/2002	9:00 am - 11:00 am	District 1, Room 59

roject Name:		Caltrans			
	Sum	mary of <i>Propos</i>	ed VA Alterna	tives	
VA Alt Number	Initial Cost Savings	Subsequent Cost Savings	Highway User Cost Savings	Total LCC (NPV) Cost Savings	Change in Performance
1	\$8,780,000	\$0	\$0	\$8,780,000	20%
2	\$39,030,000	\$0	\$0	\$39,030,000	44%
3	\$44,730,000	\$0	\$0	\$44,730,000	33%
		Comm	ents		

4.40/	1
44%	996%
20%	51%
	20%

	VA STUDY ACC	EPTED ALTERN	ATIVES		С	altrans	
Project Name	Carcians						
Summary of Accepted VA Alternatives							
VA Alt Number	Initial Cost Savings	Subsequent Cost Savings	Highway User Cost Savings	Total (NPV) Savi	Cost	Change in Performance	
2	\$39,030,000	\$0	\$0	\$39,03	0,000	44%	
		Comm	ients				
prone areas i wall length t acceptance of The substanti high value in	installing retaining n the project limits hat was proposed this VA alternative al initial cost saving provement. In ac ven "out of the VA s	b. The walls in the in the VA Study to resulted in a substance gs, coupled with a ddition to three pro-	se two areas wor base case (which cantial value impr performance impr	uld be app was PRS ovement o rovement o	roximat Alterna f approx of 44%,	ely 25% of the itive 2B). The kimately 950%.	

VA Set Number	VA Alt Numbers	Initial Cost Savings/Cost Increase	Subsequent Cost Savings/Cost Increase	Highway User Cost Savings/Cost Increase	Total LCC (NPV) Cost Savings/Cost Increase	Change in Performance	Change in Value
1*	2	\$39,030,000	\$0	\$0	\$39,030,000	44%	996%
			Con	nments			
* Indica	tes Set Used	d in Report Calcu	lations.				

VA	Caltrans						
Project Name: SI							
Impact of Conditionally Accepted Alternatives on Performance Rating							
Criteria	Criteria Weight	Conditionally Accepted Alternative	Cumulative Performance Change	Total Performan Adjustme			

VA STUDY BENEFIT SUMMARY		Caltrans				
Project Name: SR 101 Roadway Stabilization	Caltrans					
Cost of Performing VA Study (Preliminary)						
Caltrans Administrative Costs \$11,413						
In-House Team Members	\$24,90	0				
Consultant Team Leader	\$30,000					
Consultant Team Members	\$10,000					
Total Study Costs	\$76,31	3				
Summary of VA Study Benefits	(Preliminary))				
Accepted Implementation Rate (Accepted/with CA)	33% / 33%					
Cost Reduction (Percentage Accepted/with CA)	87% /	87%				
Study Return on Investment (ROI) (Accepted/with CA)511:1 / 511:1Implemented Savings/Study Costs (xx:1)511:1 / 511:1						
Return of Value Improvement	12,934:1					

Summary of Study Impacts

This VA Study focused on finding ways to identify ways to remedy problems related to roadbed instability on a short length (0.6 miles) of SR 101 in Del Norte County. The team identified three VA alternatives that might help reduce maintenance and keep the roadbed from sliding down a steep slope. One VA alternative was accepted: Construct Retaining Walls that Address Specific Terrain Instability. This had savings of approximately \$39,000,000 compared to a base cost of \$44,000,000, which proposed long lengths of retaining walls. The VA team also identified and documented several out-of-VA scope alternatives that focused on bypassing the project and tunneling around the project. These were further investigated by the Project Design Team. The results were presented to the Federal and State Parks, who agreed that the cost and severe negative environmental impacts would be great. This consensus building follow-on effort shows that VA studies can help all organizations achieve win-win results.

Value Analysis Alternatives

VA ALTERNATIVES

INTRODUCTION

The results of this study are presented as individual alternatives to the original concept. In addition, design suggestions for improving the project are included for consideration by the stakeholders.

VA ALTERNATIVES

Each alternative consists of a summary of the original concept, a description of the suggested change, a cost comparison, change in performance, a listing of its advantages and disadvantages, and a brief narrative comparing the original design with the alternative. Sketches, calculations, and benefits are also presented. The cost comparisons reflect the comparable level of detail as in the original estimate. A life cycle benefit-cost analysis for major alternatives is included where appropriate. Design suggestions are written summaries of partially developed ideas without supporting documentation.

VA SETS

VA Sets are established by the VA team as their "best value" solutions, based on improved performance, likelihood of implementation, least community impact, cost savings, or any combination of criteria. A VA Set may contain one or more alternatives, and each set is typically mutually exclusive of other sets (i.e., implementing VA Set 1 precludes implementation of VA Sets 2 and 3). VA Sets are selected alternatives combined from mutually exclusive groups that can compete in whole, or in part, against the original design concept. This requires an additional performance rating and totaling of costs for the sets.

	SUMMARY OF VA ALTERNATIVES SR 101 Roadway Stabilization	Calt	rans
Number	Title	Potential Savings	Performance
1.0	Construct Retaining Walls Throughout the Project Limits	\$8,780,000	+20%
2.0	Construct Retaining Walls that Only Address Specific Terrain Instability	\$39,030,000	+44%
3.0	Augment the Present Maintenance Program with a Contingency Plan to Accelerate Road Damage Repairs on the Existing Alignment	\$44,730,000	+33%
	Out of Right-of-Way Alternatives (Out of VA Project Scope)	Estimated Cost	
	(Out of VA Project Scope)	Cost	
А	Through Cut Excavation from PM 14.5 to 15.5	\$72,897,000	-9%
B.1	Simpson Land Bypass without a Tunnel	\$90,000,000	+31%
B.2	Simpson Land Bypass with a Tunnel Hamilton Road Bypass	\$137,000,000 \$240,000,000	+19%
C.1	One Bore Two-Lane Tunnel Around Slide Area	\$177,931,000	-14%
C.2	Two One-Way Tunnels Around Slide Area	\$169,533,000	+2%
D	Retaining Wall with Localized Slope Stressing	\$38,871,000	-19%
Е	Deep Slide Stabilization with Slope Stressing	\$80,000,000 to \$125,000,000	-2.6

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Ca	ltrans
FUNCTION:	Align Roadway	IDEA NO. AR-8	ALTERNATIVE NO. 1.0
TITLE:	Construct Retaining Walls Throughout the Project Limits		PAGE NO. 1 of 6

ORIGINAL CONCEPT:

Alternative "2B" of 1995 Project Study Report. This alternative realigns the existing roadway within the study corridor, for approximately 0.6 mile. It employs some curve straightening while providing a two-lane roadway with standard shoulders. It has an alignment interior (uphill) from the present alignment, by up to 30 meters at its midpoint along the alignment. Its vertical alignment would follow approximately that of the existing roadway. "Soldier pile" tieback walls would be employed both uphill and downhill of the roadway to resist slide movement and to maintain the cuts on the uphill side made for realignment.

Solder pile tieback walls employ structural steel sections similar to H sections, placed in a drilled hole and concreted in place, spaced about two meters on center in plan view. The soldier pile usually has its lowest elevation (pile tip) selected to be below any slide plane that exists. The total length of the soldier pile is measured from its top to its tip. They are called "soldier piles", and exposed above the ground portion of the wall having lagging between the soldier piles to retain the earth; the height of a soldier pile wall is measured by the height of lagging (which is usually embedded below ground by up to three meters); that is, the distance between lowest to the highest elevation of the lagging. Tiebacks are tensile structural elements, typically steel strands, placed in a near horizontal drilled hole, grouted in place at the lowest end, tensioned in accordance with wall design requirements, and "locked" into place, thus imparting forces to resist the driving forces imposed by the retained earth. Tiebacks would be placed on the soldier pile at one or more elevations on the pile itself, depending upon the forces that need to be exerted to maintain stability.

The original concept was made without sufficient information to fully estimate the maximum wall height or length of soldier piles, but heights of up to 12 meters, and piles with lengths of 30 meters, were probably envisioned, each subject to later verification of topography and depth to slide plane, respectively.

The Geotechnical Study prepared in May, 2001, determined that this alternative was not capable of resisting forces developed by the deep-seated slide. The cost estimate for PSR Alternative 2B used for the VA study was that estimated in 1995, escalated by Caltrans cost run-up factors related to inflation.

ALTERNATIVE CONCEPT:

This is a significant revision to Alternative 2B of the 1995 PSR. This alternative suggests constructing tied back soldier pile walls on both sides of Route 101 to resist local (shallow) slope instabilities. The difference from the original concept PSR Alternative 2B would be to increase the length of the walls but decrease the tendon length, as the deeper slide plane is not being stabilized by VA Alternative 1.0.

The difference in cost relates mainly to different costs for tie back walls.

COST SUMMARY			Present Value lighway User Cost		Net Present Value			
Original Concept	\$	44,966,000	\$	0	\$	0	\$	44,966,000
Alternative Concept	\$	36,186,000	\$	0	\$	0	\$	36,186,000
Savings	\$	8,780,000	\$	0	\$	0	\$	8,780,000
Team Member: Dan Adams		Discipline:	Structural			PERFORMANC	E:	+20%

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Caltra	ns
TITLE:	Construct Retaining Walls Throughout the Project Limits	ALTERNATIVE NO. 1.0	PAGE NO 2 of 6
		CES.	

ADVANTAGES:

- Construction and traffic control will not be on an emergency contract; therefore, the impact on the public should be less
- Stays mainly within existing right-of-way
- Improves roadway geometrics
- Protects against the shallower slip outs

DISADVANTAGES:

• May not help keep the highway open in the event of slippage in the deep slide plane

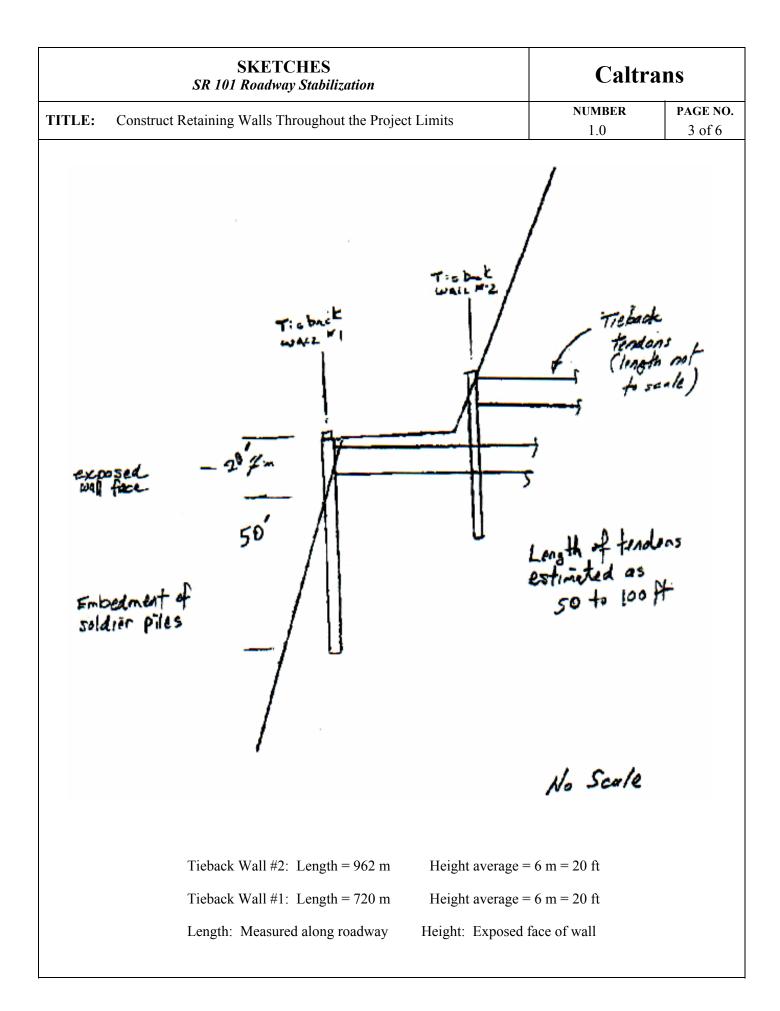
DISCUSSION / JUSTIFICATION:

By installing relatively small walls on both sides of the highway for the whole length of this project, roadway geometrics could be improved while stabilizing the slope. Stabilization on the deep slippage plane will not be increased.

Maintenance movements of one-half inch per year are considered chronic.

TECHNICAL REVIEWER COMMENTS:

Design – Would this alternative reduce the likelihood of a catastrophic failure? Reply: It would not stop a catastrophic event. A three-foot roadway drop associated with some earthquake events might be repaired in three days.


Design – Does this provide long-term stability? Reply: Probably not; however, it has not been studied at this time.

Design – How far would these walls go down? Reply: Probably as much as 50 feet.

Maintenance – The H piles in the above-ground exposed part of the walls would have some exposure to salt and therefore some corrosion. There would be massive walls to maintain, and access to the structures for repairs would be necessary.

IMPLEMENTATION CONSIDERATIONS:

Repairs and replacements of wall would be expected in the future, since this VA alternative is not a solution that will permanently stabilize the deep-seated slide.

PERFORMANCE MEASURES SR 101 Roadway Stabilization	Caltrans				
TITLE: Construct Retaining Walls Throughout the Project Limits	NUMBE 1.0	R	PAGE NO. 4 of 6		
CRITERIA	Performance	Original	Alternative		
Right-of-Way:	Measure Deg		Degree		
The realignment will require ~1 acre take of the park.	Rating	4	5		
	Weight	29	29		
	Contribution	116	145		
Maintainability:	Measure	Degree	Degree		
Except for stability on the deep slide, maintainability will be essentially the same.	Rating	6	6		
sunc.	Weight	24	24		
	Contribution	144	144		
Environmental Impact:	Measure	Degree	Degree		
Considerably less impact on trees.	Rating	3	6		
	Weight	17	17		
	Contribution	51	102		
Aesthetics:	Measure	Degree	Degree		
	Rating	6	5		
	Weight	12	12		
	Contribution	72	60		
Roadway Geometrics:	Measure	Degree	Degree		
Increased roadway width.	Rating	7	8		
	Weight	9	9		
	Contribution	63	72		
Constructibility:	Measure	Days	Days		
One-way traffic during construction.	Rating	2	4		
	Weight	9	9		
	Contribution	18	36		
Total Performance:		464	559		
Net Change in Perfor	rmance:		+20%		

	ASSUMPTIONS & CALCULATIONS SR 101 Roadway Stabilization	Calt	rans
TITLE:	Construct Retaining Walls Throughout the Project Limits	NUMBER 1.0	PAGE NO. 5 of 6
			•

Assumption

Tieback Wall Cost = $2,000 \text{ m}^2$

Wall $\#1 = 720 \text{ m x } 6 \text{ m x } \$2,000/\text{m}^2 = \$8,640,000$

Wall $#2 = 962 \text{ m x } 6 \text{ m x } \$2,000/\text{m}^2 = \$11,544,000$

The assumed height was taken as six meters (from the as-built drawings), and the length was assumed to be the whole length of the project (0.6 miles) on both sides of the highway; subtracting the 98-meter long and 48-meter long walls that already exist.

INITIAL COSTS SR 101 Roadway Stabilization							trans
Construct Retaining		TLE Throughout the	Project Limits			NUMBER	PAGE NO. 6 of 6
CONSTRUCTION ELEMENT			NAL CONCI	DT			
CONSTRUCTION ELEMENT		UKIGI	NAL CONCI			ERNATIVE C	UNCEPT
Description ROADWAY ITEMS	Unit	Quantity	Cost/Unit	Total	Quantity	Cost/Unit	Total
Roadway Excavation	M ³	36,000	\$15	\$540,000	36,000	\$15	\$540,00
Traffic Control System	LS	1	\$2,000,000	\$2,000,000	1	\$2,000,000	\$2,000,00
Class 1 Aggregate Subbase	M ³	4,600	\$25	\$115,000	4,600	\$30	\$138,00
Class 2 Aggregate Base	M ³	1,900	\$35	\$66,500	2,000	\$40	\$80,00
Asphalt Concrete	tonne	3,900	\$60	\$234,000	3,900	\$60	\$234,00
Other roadway items (drainage, clear/grub, etc.)	LS	1	\$95,000	\$95,000	1	\$124,000	\$124,00
10% Mobilization	ea	1	\$0	\$0	1	\$311,600	\$311,60
							· · · · · ·
ROADWAY SUBTOTAL				\$3,050,500			\$3,427,600
ROADWAY MARK-UP	35%			\$1,067,675			\$1,199,660
VA ADDED MARK-UP				\$10,000			\$10,00
ROADWAY TOTAL				\$4,128,175			\$4,637,260
STRUCTURE ITEMS							
Tieback Walls	LS	1	\$26,400,000	\$26,400,000	1	\$20,200,000	\$20,200,00
10% Mobilization	ea	1	\$2,640,000	\$2,640,000	1	\$2,020,000	\$2,020,00
				# 20 0 /0 000			#22.220.00
STRUCTURE SUBTOTAL STRUCTURE MARK-UP	25%			\$29,040,000			\$22,220,000
VA ADDED MARK-UP	25%			\$7,260,000			\$5,555,000
STRUCTURE TOTAL				\$36,300,000			\$27,775,000
RIGHT-OF-WAY ITEMS							
Right-of-Way Acquisition		1	\$370,000	\$370,000	1	\$384,000	\$384,00
Utility Relocation							
Relocation Assistance							
Demolition Title and Escrow Fees							
RIGHT-OF-WAY TOTAL				\$370,000			\$384,000
ENVIRONMENTAL MITICATION ITEMS							
ENVIRONMENTAL MITIGATION ITEMS		1	\$80,000	\$80,000	1	\$100,000	\$100,00
CAPITAL OUTLAY SUPPORT ITEMS							
Reengineering and Redesign	0.1			\$4,087,818			\$3,289,62
Project Engineering							
TOTAL				\$44,965,993			\$36,185,88
TOTAL (Rounded)				\$44,966,000			\$36,186,00
						SAVINGS	\$8,780,00

VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans
TITLE: Construct Retaining Walls Throughout the Project Limits	NUMBER 1.0
Team Member: Dan Adams I have reviewed this alternative and agree with it as it is written I have reviewed this alternative and suggest the following (or attached) changes 	

Team Member: Mike Eagan

I have reviewed this alternative and agree with it as it is writtenI have reviewed this alternative and suggest the following (or attached) changes

Team Member: Gary Garofalo

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Deborah Harmon

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Doug Jackson

 \blacksquare I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans
TITLE: Construct Retaining Walls Throughout the Project Limits	NUMBER 1.0
 Team Member: Jon Kaneshiro ☑ I have reviewed this alternative and agree with it as it is written □ I have reviewed this alternative and suggest the following (or attached) changes 	

Team Member: Susan Morrison

 \square I have reviewed this alternative and agree with it as it is written

 \Box I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Aida Parkinson

 \blacksquare I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Michael Stapleton

 \blacksquare I have reviewed this alternative and agree with it as it is written

 \Box I have reviewed this alternative and suggest the following (or attached) changes

VA ALTERNATIVE IMPLEMENTATION ACTION SR 101 Roadway Stabilization	Caltrans
TITLE: Construct Retaining Walls Throughout the Project Length	NUMBER 1.0
RESPONSES	DISPOSITION
Technical Feasibility / Validated Performance: This VA alternative is technically feasible; however, it is rejected in favor of VA Alternative 2.0 because it is more cost effective, has less negative environmental impacts, and will be easier to program than the project base case.	 □ Accept □ Conditionally Accept ☑ Reject
Implementable Portions:	Validated Performance %
Validated Cost Savings:	Validated Savings
Schedule Impacts:	
Other Comments: If geotechnical studies conducted during the Project Development Process determine cannot be implemented, then this VA alternative may become an option to potential concerns.	

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Ca	ltrans
FUNCTION:	Increase Stability	IDEA NO. IS-17	ALTERNATIVE NO. 2.0
TITLE:	PAGE NO. 1 of 11		

ORIGINAL CONCEPT:

Use soldier pile tieback walls above and below the roadway (Alternative "2B" of the 1995 PSR).

ALTERNATIVE CONCEPT:

This VA alternative would retain the existing alignment. This VA alternative addresses only the most unstable areas of this project. This VA alternative proposes to construct maintenance tieback soldier pile walls below the roadway to resist lateral shallow slope instabilities in areas of poorly consolidated materials with transverse and longitudinal cut-off drainage structures. Soil nail walls will be used along the slopes above the roadway to retain slide mass. Ditches above and behind the wall crest would capture upslope surface runoff and cross drains would convey the water downslope. This proposal is about one-third the length of the original concept proposal. This VA alternative differs from VA Alternative 1.0 in that the upslope treatment is soil nail walls instead of soldier pile tiebacks and is approximately 25% of the length.

ADVANTAGES:

- Lowest initial cost alternative
- Maintains existing scenic corridor viewshed
- Minimizes right-of-way acquisition tieback and slope maintenance easements only
- Minimizes tree removal
- Relative ease of constructibility
- Short lead time to permit, fund, and construct
- Geometrics regarding shoulder width and superelevation can be improved
- Prevent slip-out resulting from sliding along the shallower slip planes

DISADVANTAGES:

- Two construction seasons traffic is reduced to signalized one-way traffic
- Geometrics are not appreciably improved speed, passing lanes, etc.
- Does not stabilize deep landslide or catastrophic events

COST SUMMARY	Initial Cost				Present Value Highway User Cost		Net Present Value	
Original Concept	\$	44,966,000	\$	0	\$	0	\$	44,966,000
Alternative Concept	\$	5,936,000	\$	0	\$	0	\$	5,936,000
Savings	\$	39,030,000	\$	0	\$	0	\$	39,030,000
Team Member: Doug Jackson		Discipline:	Structu	res Constructi	ion	PERFORMANC	E:	+44 %

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Caltra	ns
TITLE:	Use Maintenance Walls that Do Not Penetrate the Deep Slide Plane	ALTERNATIVE NO. 2.0	PAGE NO . 2 of 11

DISCUSSION / JUSTIFICATION:

This alternative intends to retain upslope slide debris, collecting upslope surface and subsurface run-off, and conveying to a lower slope area, potentially improving roadway width/superelevations, and retaining/stabilizing existing roadway fill areas.

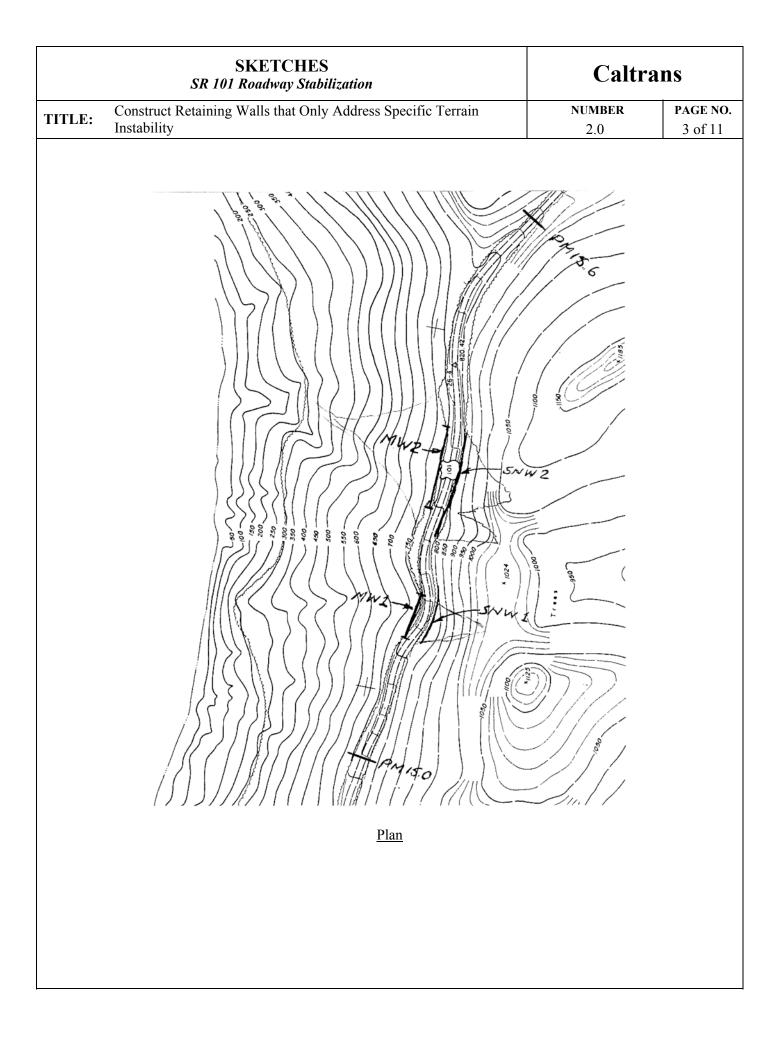
This alternative is justified based upon maximizing the VA performance measures established for this value analysis: minimize expanding right-of-way into park boundaries, improve maintainability by increasing stability, minimize environmental impacts, maintain aesthetics of the existing viewshed, remain within existing highway corridor to qualify as a SHOPP project, and select construction methods pragmatic to physical characteristics of the VA study area. In addition, ease of permitting due to similar projects having been completed in the vicinity of VA study area, ease of funding due to lower cost, and reduction of traffic accidents due to rock slides, and improved geometrics.

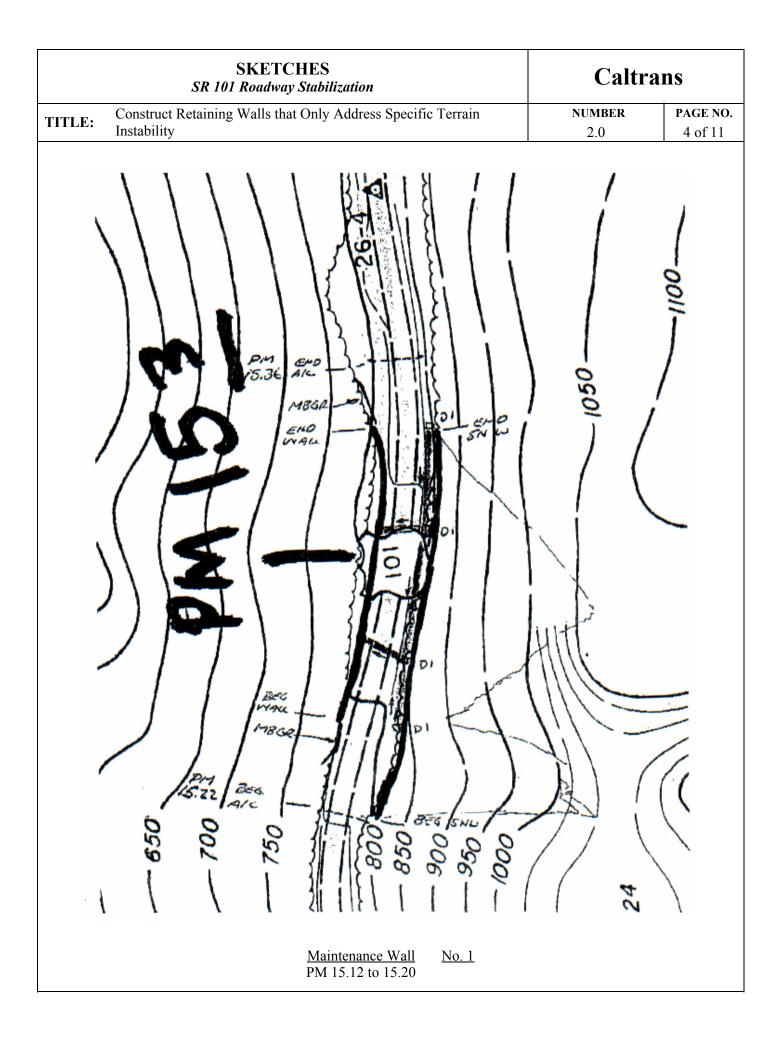
TECHNICAL REVIEWER COMMENTS:

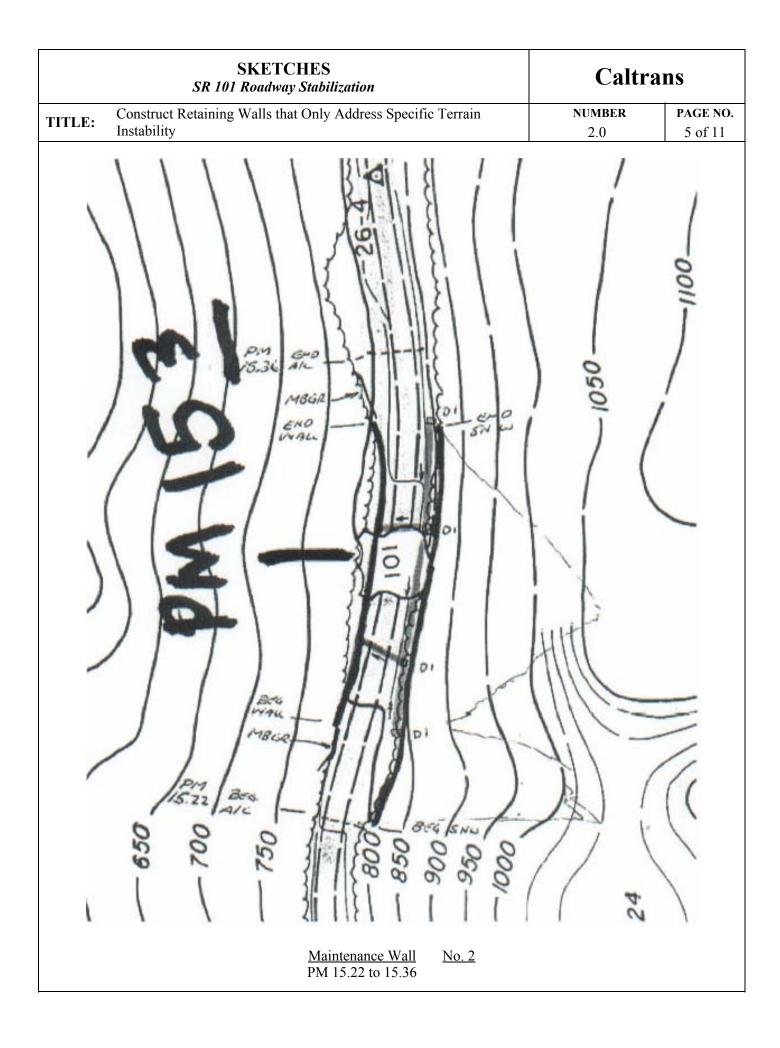
Design – Does this alternative work when the roadway is slipping entirely? Reply: No, it is only good for localized stability.

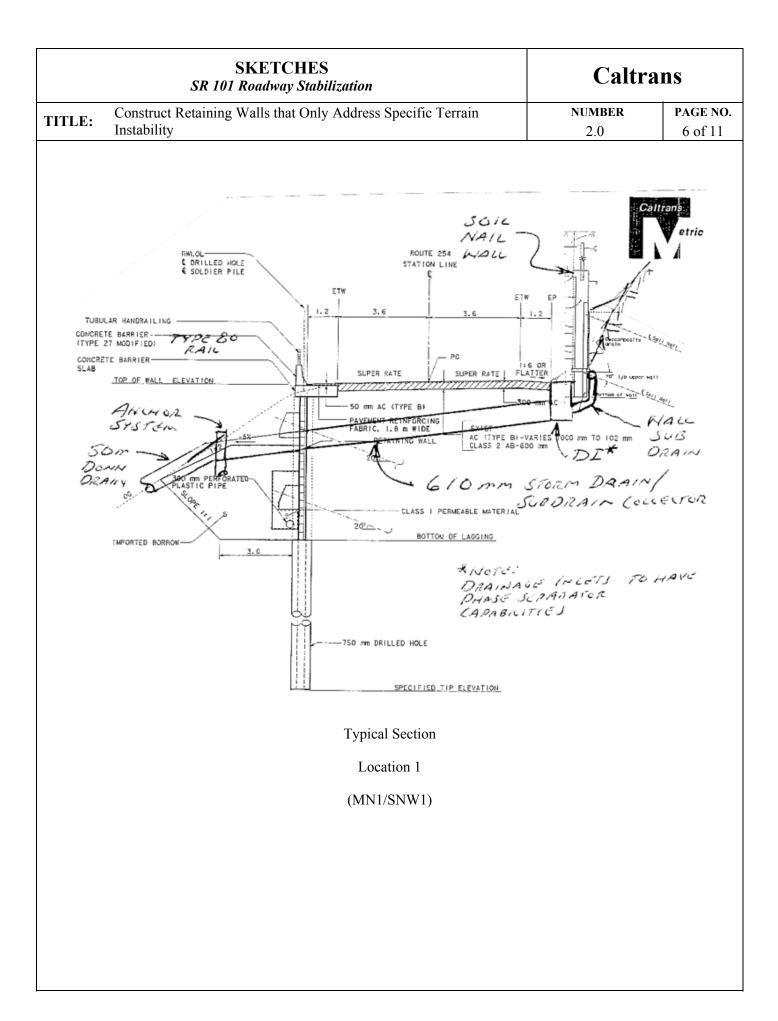
Design – When this alternative is compared to Alternative 1, does it increase stability? Reply: It is probably not much different.

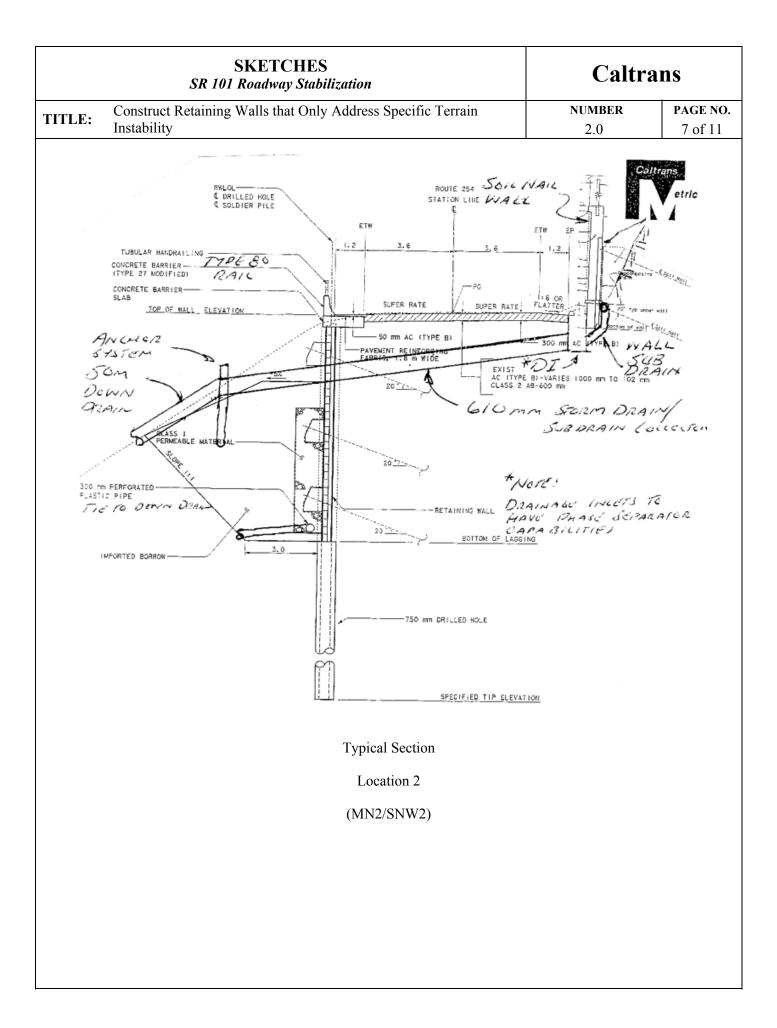
Structures Construction – Does this have one row of tieback walls, not both above and below? Reply: There could be two to three levels of tiebacks on the wall. The wall would be placed adjacent to the downhill side.


IMPLEMENTATION CONSIDERATIONS:


Observational method instrumentation and monitoring would be needed to determine where walls would be placed.


Considerable layout, geotechnical, and environmental information would have to be obtained.


Some locations will require walls higher than 6 meters, while other locations will not require any walls.


Repairs and replacements of wall would be expected in the future since this VA alternative is not a solution that will permanently stabilize the deep-seated slide.

	SKETCHES SR 101 Roadway Stabilization	Caltr	ans
TITLE:	Construct Retaining Walls that Only Address Specific Terrain Instability	NUMBER 2.0	PAGE NO 8 of 11
	<image/>		
	<image/>		
	TYPICAL CONSTRUCTION	METHODS	

PERFORMANCE MEASURES SR 101 Roadway Stabilization		Caltrar	IS	
TITLE: Construct Retaining Walls that Only Address Specific Terrain Instability	NUMBE 2.0	R I	PAGE NO. 9 of 11	
CRITERIA	Performance	Original	Alternative	
Right-of-Way:	Measure	Degree	Degree	
No of right-of-way takes, with the exception of slope easements and tieback/soil nail subsurface easements.	Rating	4	8	
tiebaek/son han subsurface easements.	Weight	29	29	
	Contribution	116	232	
Maintainability:	Measure	Degree	Degree	
Temporary road width reductions to clear/repair slides will be needed.	Rating	6	5	
	Weight	24	24	
	Contribution	144	120	
Environmental Impact:	Measure	Degree	Degree	
Minimal impact as a result of maintaining project within existing right-of- way.	Rating	3	9	
	Weight	17	17	
	Contribution	51	153	
Aesthetics:	Measure	Degree	Degree	
Existing viewsheds, ocean views maintained – upslope tieback walls may be architecturally enhanced.	Rating	6	6	
	Weight	12	12	
	Contribution	72	72	
Roadway Geometrics:	Measure	Degree	Degree	
No improvements in alignment. Slight improvement in width to allow a bike lane in shoulder area.	Rating	7	6	
lane in shoulder area.	Weight	9	9	
	Contribution	63	54	
Constructibility:	Measure Days		Days	
One-way traffic (at least during soil nail work) may allow for reduced width two-lane traffic during tieback installations.	Rating	2	4	
two-tane traffic during neoack installations.	Weight	9	9	
	Contribution	18	36	
Total Performance:		464	667	
Net Change in Performance:				

ASSUMPTIONS & CALCULATIONS SR 101 Roadway Stabilization		Caltrans	
	Construct Retaining Walls that Only Address Specific Terrain		
Instability		2.0	10 of 11
Tieback Wall Cost Estimates			
198 m wall S/O VA study area - $$2,000 \text{ k} \rightarrow 10.1 k	m		
•	111		
48 m wall N/O VA study area - $\$580 \text{ k} \rightarrow \12.1 k/m			
Soil Nail Wall Cost Estimates			
Broadway wall – 2,230 m ² wall @ $1.446 \text{ k} \rightarrow 648/$	m^2 3 m avg. heig	ht	
Mall wall – 254 m ² wall @ $182 \text{ k} \rightarrow 717/\text{m}^2$	use \$2 k/linea	r meter	

		L COSTS 19 Stabiliz				Cal	trans	
Construct Retaining Walls t	TI	TLE		tability		NUMBER 2.0	PAGE NO. 11 of 11	
						ERNATIVE C		
	.							
Description ROADWAY ITEMS	Unit	Quantity	Cost/Unit	Total	Quantity	Cost/Unit	Total	
Roadway Excavation	M ³	36,000	\$15	\$540,000	1	\$5,000	\$5,000	
Traffic Control System	LS	1	\$2,000,000	\$2,000,000	1	\$150,000	\$150,000	
Class 1 Aggregate Sub base	M ³	4,600	\$25	\$115,000		+ · · · · , · · · ·	+,	
Class 2 Aggregate Base	M ³	1,900	\$35	\$66,500	343	\$35	\$12,00	
Asphalt Concrete	tonne	3,900	\$60	\$234,000	1,346	\$60	\$80,76	
Other roadway items (drainage, clear/grub, etc.)	LS	1	\$95,000	\$95,000	1	\$153,000	\$153,000	
10% Mobilization	ea	1	\$0	\$0	1	\$40,000	\$40,000	
ROADWAY SUBTOTAL				\$3,050,500			\$440,765	
ROADWAY MARK-UP	35%			\$1,067,675			\$154,268	
VA ADDED MARK-UP				\$10,000			\$10,000	
ROADWAY TOTAL				\$4,128,175			\$605,033	
STRUCTURE ITEMS								
Tieback Walls	LS	1	\$26,400,000	\$26,400,000	250	\$10,000	\$2,500,00	
Soil Nail Walls	М	1	\$2,640,000	\$2,640,000	292	\$2,000	\$584,00	
Type 80 Rail	M				250	\$1,600	\$400,00	
10% Mobilization	ea				1	\$348,000	\$348,00	
STRUCTURE SUBTOTAL				\$29,040,000			\$3,832,000	
STRUCTURE MARK-UP	25%			\$7,260,000			\$958,000	
VA ADDED MARK-UP								
STRUCTURE TOTAL				\$36,300,000			\$4,790,000	
Supplemental Funds				\$69,000			\$15,00	
RIGHT-OF-WAY ITEMS								
Right-of-Way Acquisition		1	\$370,000	\$370,000	1	\$384,000	\$384,00	
Utility Relocation								
Relocation Assistance								
Demolition								
Title and Escrow Fees								
RIGHT-OF-WAY TOTAL				\$370,000			\$6	
ENVIRONMENTAL MITIGATION ITEMS		1	\$80,000	\$80,000			\$	
CAPITAL OUTLAY SUPPORT ITEMS								
Reengineering and Redesign	0.1			\$4,087,818			\$541,00	
Project Engineering								
TOTAL				\$44,965,993			\$5,936,03	
TOTAL (Rounded)				\$44,966,000			\$5,936,00	
				, -,*		SAVINGS	\$39,030,00	

VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans
TITLE: Construct Retaining Walls that Only Address Specific Terrain Instability	NUMBER 2.0
 Team Member: Dan Adams ☑ I have reviewed this alternative and agree with it as it is written □ I have reviewed this alternative and suggest the following (or attached) changes 	

Team Member: Mike Eagan

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Gary Garofalo

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Deborah Harmon

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Doug Jackson

 \blacksquare I have reviewed this alternative and agree with it as it is written

VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans
TITLE: Construct Retaining Walls that Only Address Specific Terrain Instability	NUMBER 2.0
 Team Member: Jon Kaneshiro ☑ I have reviewed this alternative and agree with it as it is written □ I have reviewed this alternative and suggest the following (or attached) changes 	

Team Member: Susan Morrison

 \blacksquare I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Aida Parkinson

 \blacksquare I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Michael Stapleton

 \blacksquare I have reviewed this alternative and agree with it as it is written

VA ALTERNATIVE IMPLEMENTATION ACTION SR 101 Roadway Stabilization	Caltrans
TITLE: Construct Retaining Walls that Only Address Specific Terrain Instability	NUMBER 2.0
RESPONSES	DISPOSITION
Technical Feasibility / Validated Performance: Although this is not a complete fix to the instability problems in the project area, it is acceptable to State and National Parks.	 ☑ Accept □ Conditionally Accept □ Reject
Implementable Portions: A complete fix would stabilize the deep-seated slip plane which is unrealistic to physically construct because of slope steepness and inability to penetrate stable ground with conventional stabilizing methods.	Validated Performance 44%
Validated Cost Savings:	Validated Savings \$39,030,000
Schedule Impacts: This VA alternative would be easier to program that the proposed base; therefore, ther project delivery.	e is a potential for earlier
Other Comments: In the event that any geologic studies conducted during the Project Development Stage alternative is infeasible, then VA Alternative 1.0 may become an option.	e conclude that this VA

,	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Ca	altrans			
FUNCTION:	Maintain Highway	IDEA NO. C-5	ALTERNATIVE NO. 3.0			
TITLE:	TITLE: Augment the Present Maintenance Program with a Contingency Plan to Accelerate Road Damage Repairs on the Existing Alignment					
ORIGINAL CONCEPT: Use soldier pile tieback walls above and below the roadway (Alternative "2B" of the 1995 PSR).						
ALTERNAT	IVE CONCEPT:					

No build and keep present maintenance program. Under this alternative, the subject section of SR 101 would continue to be maintained under the existing maintenance/construction strategy at a cost of approximately \$640,000 per year for the 12.5 to 15.6 PM segment. The maintenance cost is approximately \$60,000 per year for maintenance and construction of one tieback wall every five years in the 15.0 to 15.6 PM segment. In addition, a contingency plan would be developed that would address a "catastrophic" failure event. One example contingency plan is included in the Assumptions and Calculations section of this VA Alternative for reference. It is intended as a starting point for discussion; it is <u>not</u> a final contingency plan.

This example contingency plan assumes reconstruction of the existing alignment using a soldier pile tieback wall design. The plan would include advance material procurement and storage. Thus, material would be ready for use at a standby location in the event of a "catastrophic" failure. Contractor services would be acquired according to existing emergency contracting procedures.

ADVANTAGES:

- Clarifies Caltrans plan for responding in an emergency—the result is lessened concern from interested parties regarding potential Caltrans action in an emergency
- Minimizes immediate environmental impacts when compared to other VA Alternatives
- Eliminates immediate right-of-way acquisition
- Eliminates immediate degradation of aesthetics
- Increases ability to respond swiftly and efficiently in an emergency situation
- Minimizes time to reopen roadway in an emergency
- Provides a mechanism for early contact with stakeholders
- Might allow for advance 4(f) clearance as necessary
- Consistent with Redwood National State Park Management Plan dated 4/6/2000 specifically its circulation/roads section, pp 61-62
- Might be funded out of existing SHOPP program with relative ease
- Contingency plan would be implemented only when absolutely necessary in the event of catastrophic failure
- Minimizes material procurement costs
- Delays costly construction that is not currently necessary
- Would avoid difficult transportation of large H beams on roads with considerable curves in an emergency

COST SUMMARY		Initial Cost		esent Value sequent Cost	Present Value ghway User Cost		Net Present Value	
Original Conce	pt	\$	44,966,000	\$	0	\$ 0	\$	44,966,000
Alternative Con	Alternative Concept		236,000	\$	0	\$ 0	\$	236,000
Savings		\$	44,730,000	\$	0	\$ 0	\$	44,730,000
Team Member:	Susan Morriso Dan Adams	on	Discipline:	Trans Struct	portation & tures	PERFORMANCE:		+33 %

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Caltra	ins
	Augment the Present Maintenance Program with a Contingency	ALTERNATIVE NO.	PAGE NO.
TITLE:	Plan to Accelerate Road Damage Repairs on the Existing		
III LL.	Alignment To Accelerate Road Damage Repairs on the Existing	3.0	2 of 8
	Alignment		

DISADVANTAGES:

- Provides no long-term solution to impacts of continuous earth movement intermittent road closures
- Roadway geometrics are not improved
- Less flexibility to minimize potential environmental impacts
- May require expenditure of funds to procure and store materials before they are needed
- Purchase of material that may not be usable, depending upon the failure
- Potential overdesign related to placing a bigger H beam that is needed
- Potential for design of a solution that may never be implemented
- May require some administrative costs

DISCUSSION / JUSTIFICATION:

The subject section of SR 101, known as the Last Chance Grade, sits on a steep cliff with the Pacific Ocean to the west, and a highly unstable hillside with multiple slide planes both north and east of the roadway. The area has been the subject of intensive study since at least 1987, because of concerns that serious roadway failures might cut off Del Norte county from the rest of California to the south. During reconstruction related to roadway settlement, Del Norte County's primary population centers would be isolated from the remainder of California, with access only from the north via SR 101 and SR 199 into Oregon.

This alternative gives heavy emphasis to minimizing impacts to the environment, aesthetics, and right-of-way takes, while at the same time addressing the fact that a serious roadway failure may occur. In addition, it allows early consultation and dialogue with stakeholders.

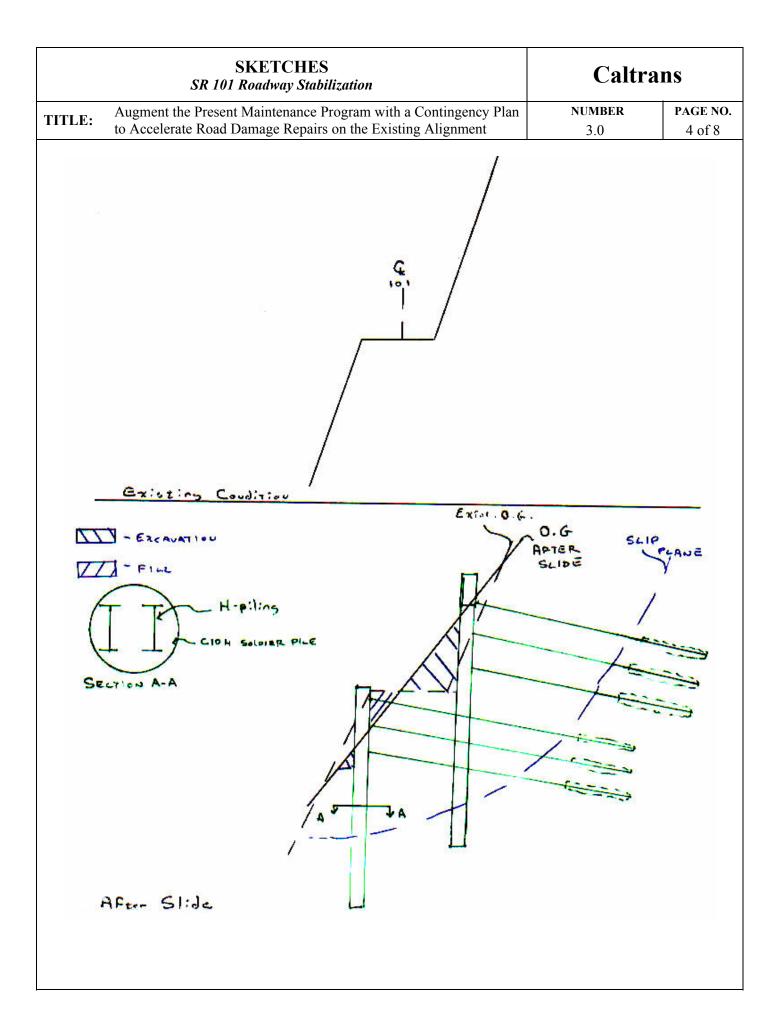
Geotechnical experts suggest that two types of catastrophic failure events are possible in the project area. One is caused by a major earthquake and the other by significant rainfall; either of these events could cause an estimated 3 to 10 feet of movement by activating the deep-seated failure plane. These effects would likely be major disruption of vehicular traffic, including a full roadway closure of at least one to two weeks.

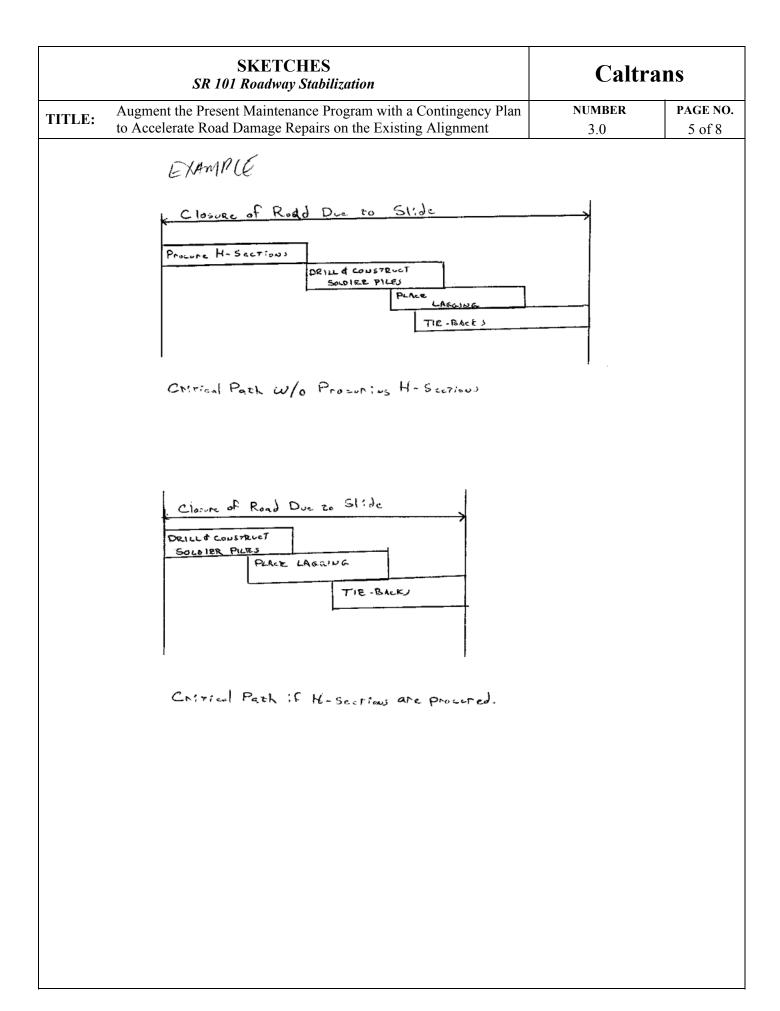
This alternative specifically addresses the possibility of either of these failure events by developing a contingency plan that would be ready for implementation when such a failure occurred. This example plan assumes the use of soldier pile tieback walls as the key component of hillside stabilization and roadway reconstruction. It will provide an opportunity to have a supply of construction material on hand to repair damage. It would not necessarily provide enough material for a complete repair.

The potential difficulty of procuring H-sections quickly in an emergency situation means that purchasing them in advance, as part of a contingency plan is essential. Because steel manufacturers generally produce H-sections in interval batches, a scarcity of H-sections could significantly slow the construction and roadway reopening.

Under this alternative soldier pile tieback walls could be designed using H-sections of specific size. A threeweek supply of these H-sections would be procured and stored for immediate use in the event of a catastrophic failure. Without these stored materials, the project could be delayed by as much as three weeks. This delay translates into prolonged roadway closures and lack of access to the northern part of Del Norte County.

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Caltrans		
	Augment the Present Maintenance Program with a Contingency	ALTERNATIVE NO.	PAGE NO.	
TITLE:	Plan to Accelerate Road Damage Repairs on the Existing Alignment	3.0	3 of 8	


TECHNICAL REVIEWER COMMENTS:


IMPLEMENTATION CONSIDERATIONS:

A contingency plan should be developed and periodically programmed into the project funding process. It should address different types of expected traffic disruptions. Responsibilities should be identified and assigned. Integration with routine roadway projects should be considered.

Maintenance – The acquisition of lagging material has been difficult in the past.

Suggest meetings with external stakeholders to resolve potential issues and concerns.

PERFORMANCE MEASURES SR 101 Roadway Stabilization		Caltran	IS	
Augment the Present Maintenance Program with a ContingencyTITLE:Plan to Accelerate Road Damage Repairs on the Existing	NUMBE	R P	PAGE NO.	
Alignment	3.0		6 of 8	
CRITERIA	Performance	Original	Alternative	
Right-of-Way:	Measure	Degree	Degree	
Would not require significant right-of-way from the base case alternative.	Rating	4	8	
	Weight	29	29	
	Contribution	116	232	
Maintainability:	Measure	Degree	Degree	
A reduction over the base case alternative because road stabilizing	Rating	6	3	
improvements are not made.	Weight	24	24	
	Contribution	144	72	
Environmental Impact:	Measure	Degree	Degree	
This VA alternative proposes essentially a no-build, which causes much less	Rating	3	8	
environmental impacts.	Weight	17	17	
	Contribution	51	136	
Aesthetics:	Measure	Degree	Degree	
	Rating	6	5	
	Weight	12	12	
	Contribution	72	60	
Roadway Geometrics:	Measure	Degree	Degree	
No improvement to roadway geometrics.	Rating	7	3	
	Weight	9	9	
	Contribution	63	27	
Constructibility:	Measure	Days	Days	
Construction would not take place unless a catastrophic failure occurred. If	Rating	2	10	
failure occurred, constructibility would be better than no-build.	Weight	9	9	
	Contribution	18	90	
Total Performance:		464	617	
Net Change in Perfor	mance:		+33%	

	ASSUMPTIONS & CALCULATIONS SR 101 Roadway Stabilization	Calt	rans
TITLE:	Augment the Present Maintenance Program with a Contingency Plan to Accelerate Road Damage Repairs on the Existing Alignment	NUMBER 3.0	PAGE NO 7 of 8
	ual cost to sustain current maintenance/construction = \$700,000. inuation of current maintenance/construction strategy on current alignmen ay.	nt and within Ca	ltrans right-
	ingency plan construction would be implemented only under defined "cat 2^{-12} " or (2) 3'.	astrophic" failu	re:
• Stora	age at Redwood National/State Park "Sand House" facility.		
• Need	l enough stored piles to be ahead of steel manufacturing process by three	weeks.	
	planning for other materials, labor, etc., because steel is the key to moving rgency.	g forward swiftly	in an
	ier pile tieback walls on the current alignment would be an adequate desig strophic failure event.	gn solution under	r a
Soldier F	Pile Spacing = 3 m		
Soldier F	Pile Length = 15 m		
NOTE:	Procure enough H-section piling to get a three-week head start. Assume three piles can be constructed/day.		
<u>3 piles</u> x day	2 H-sections/pile x $\frac{15 \text{ m}}{\text{pile}}$ x 21 days = 1,890 LM (H-section)		
1,890 LN	$A \ge \frac{\$100}{LM} = \frac{\$189,000 \sim \$200,000}{LM}$		
Procurin	g the H-sections could reduce the road closure by as much as 21 days.		
Procure	contracts (Contract Administration Maintenance).		
Renew e	very 5 years.		
This will	add an annual administration cost to administer contracts.		

INITIAL COSTS SR 101 Roadway Stabilization							Caltrans		
		rle				NUMBER	PAGE NO.		
Augment the Present M Accelerate Road Dam						3.0	8 of 8		
CONSTRUCTION ELEMENT									
Description	Unit	Quantity	Cost/Unit	Total	Quantity	Cost/Unit	Total		
ROADWAY ITEMS									
Roadway Excavation	M ³	36,000	\$15	\$540,000			8		
Traffic Control System	LS	1	\$2,000,000	\$2,000,000			\$		
Class 1 Aggregate Sub base	M ³	4,600	\$25	\$115,000			9		
Class 2 Aggregate Base	M ³	1,900	\$35	\$66,500			\$		
Asphalt Concrete	tonne	3,900	\$60	\$234,000			\$		
Other roadway items(drainage, clear/grub, etc)	LS	1	\$95,000	\$95,000			\$		
10% Mobilization		1	\$0	\$0			\$		
	ea	1	50	\$0			¢		
ROADWAY SUBTOTAL				\$3,050,500			\$		
ROADWAT SUBTOTAL ROADWAY MARK-UP	35%			\$1,067,675			¢ \$		
VA ADDED MARK-UP	3570			\$1,007,075					
ROADWAY TOTAL				\$4,128,175			\$		
STRUCTURE ITEMS									
Tieback Walls	LS	1	\$26,400,000	\$26,400,000			9		
10% Mobilization	ea	1	\$2,640,000	\$2,640,000			9		
Furnish H-Sections	М				1,890	\$100	\$189,00		
STRUCTURE SUBTOTAL				\$29,040,000			\$189,00		
STRUCTURE MARK-UP	25%			\$7,260,000			\$139,00		
VA ADDED MARK-UP	2370			\$7,200,000			\$47,25 \$		
STRUCTURE TOTAL				\$36,300,000			\$236,25		
STRUCTURE IOTAL				\$50,500,000			\$250,25		
RIGHT-OF-WAY ITEMS									
Right-of-Way Acquisition		1	\$370,000	\$370,000			5		
Utility Relocation									
Relocation Assistance									
Demolition									
Title and Escrow Fees									
RIGHT-OF-WAY TOTAL				\$370,000			\$		
ENVIRONMENTAL MITIGATION ITEMS		1	\$80,000	\$80,000			5		
CADITAL OUTLAN CUDDODT TTEME									
CAPITAL OUTLAY SUPPORT ITEMS	0.1			\$1 007 010			d		
Reengineering and Redesign Project Engineering	0.1			\$4,087,818			5		
TOTAL				\$44,965,993			\$236,25		
TOTAL (Rounded)				\$44,966,000			\$236,00		
	•		I	, , , ,		SAVINGS	\$44,730,00		

	VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans
TITLE:	Augment the Present Maintenance Program with a Contingency Plan to Accelerate Road Damage Repairs on the Existing Alignment	NUMBER 3.0
	ber: Dan Adams e reviewed this alternative and agree with it as it is written e reviewed this alternative and suggest the following (or attached) changes	

Team Member: Mike Eagan

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Gary Garofalo

 \square I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Deborah Harmon

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Doug Jackson

 \blacksquare I have reviewed this alternative and agree with it as it is written

	VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans
TITLE:	Augment the Present Maintenance Program with a Contingency Plan to Accelerate Road Damage Repairs on the Existing Alignment	NUMBER 3.0
	ber: Jon Kaneshiro e reviewed this alternative and agree with it as it is written e reviewed this alternative and suggest the following (or attached) changes	

Team Member: Susan Morrison

 \blacksquare I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Aida Parkinson

 \blacksquare I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Michael Stapleton

 \blacksquare I have reviewed this alternative and agree with it as it is written

VA ALTERNATIVE IMPLEMENTATION ACTION SR 101 Roadway Stabilization	Caltrans
TITLE: Augment the Present Maintenance Program with a Contingency Plan to Accelerate Road Damage Repairs on the Existing Alignment	NUMBER 3.0
RESPONSES	DISPOSITION
Technical Feasibility / Validated Performance: This VA alternative is technically feasible; however, the project decision makers agreed that the contingency plan concept be forwarded to the District Maintenance organization as a best management practice to be applied to the project area.	 □ Accept □ Conditionally Accept ☑ Reject
Implementable Portions:	Validated Performance %
Validated Cost Savings:	Validated Savings \$
Schedule Impacts: Other Comments:	

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Ca	Caltrans		
FUNCTION:	Align Roadway	IDEA NO. AR-1	ALTERNATIVE NO. A		
TITLE:	Through Cut Excavation from PM 14.5 to 15.5		PAGE NO. 1 of 6		
ORIGINAL PSR Alternate					
	oldier pile walls.				

ALTERNATIVE CONCEPT:

This alternative would realign SR 101 in a through-cut to the east of the slide plane of the Last Chance Slide. The proposed alignment would be approximately 1,600 meters (1 mile) in length. Soldier pile walls will be required at the south and north to tie ends to the existing alignment. This alternative would generate a minimum of 2,900,000 m³ of disposal material, require a minimum 10.28 hectares (2540 acres) of right-of-way from Del Norte Coast Redwoods State Park, impact an estimated minimum of 275 old growth redwood trees, and cost \$68,000,000.

ADVANTAGES:

- Built on stable ground
- Increases ocean retreat buffer
- Can be built with conventional equipment and techniques
- Provides more opportunities for vista points
- Minimizes closures and delays during construction

DISADVANTAGES:

- Removes up to 275 old growth redwoods
- Requires highly threatened and endangered species mitigation costs
- Significant disposal issues and costs
- Requires significant parkland
- Requires two years minimum to construct

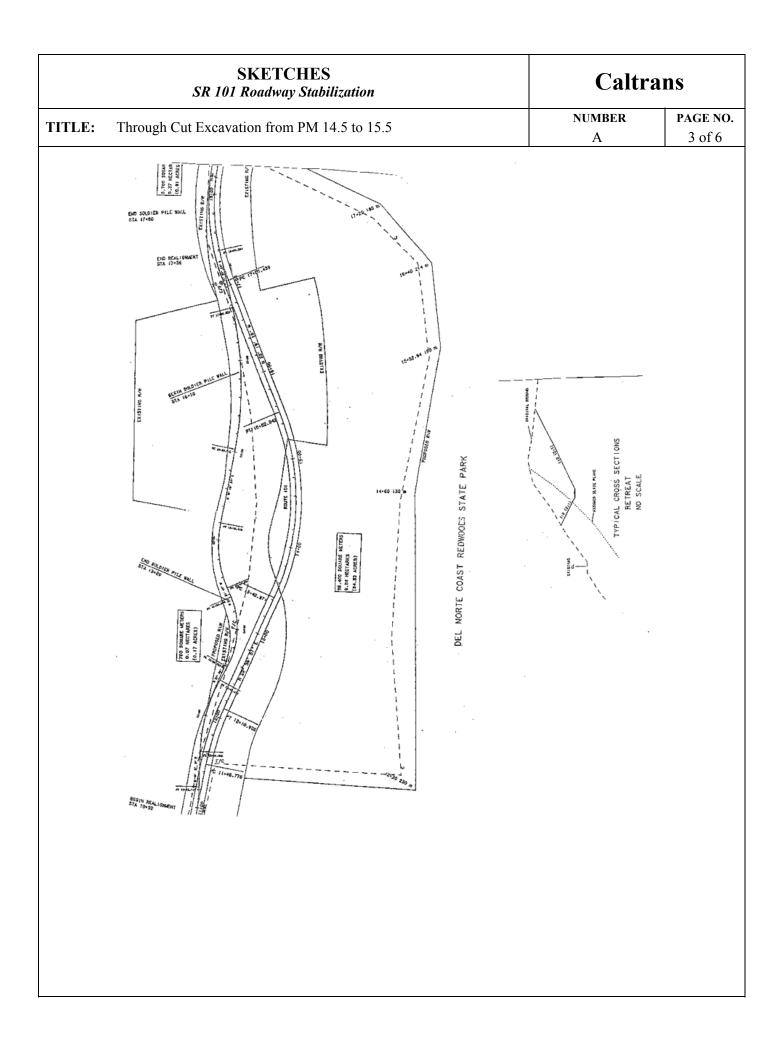
COST SUMMARY		Initial Cost	Present Va Subsequent		Present Value ghway User Cost		Net Present Value
Original Concept	\$ 4	44,966,000	\$	0	\$ 0	\$	44,966,000
Alternative Concept	\$ 7	72,897,000	\$	0	\$ 0	\$	72,897,000
Savings	\$ (2	7,931,000)	\$	0	\$ 0	\$	(27,931,000)
Team Member: Michael Staple	eton	Discipline:	Engineering		PERFORMANC	CE:	- 9%

VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Caltrans			
TITLE: Through Cut Excavation from PM 14.5 to15.5	ALTERNATIVE NO. A	PAGE NO 2 of 6		

DISCUSSION / JUSTIFICATION:

This alternative was one of the four alternatives evaluated by the 1995 PSR. Of the four alternatives, this alternative was the only one determined to be geotechnically feasible in the May 2001 Preliminary Geotechnical Report. The deep excavation would be devastating to this portion of Del Norte Coast Redwood State Park and would require a very significant disposal site. If a catastrophic slide did occur with mass wasting of the slope into the ocean, this alternative could be started under a contingency plan to reopen the roadway. Funding for soldier pile walls for the beginning and ending tie ends for the excavation have been included. Traffic would be impacted less than other alternatives proposed on the existing alignment by the VA study. Extending the original PSR extent from approximately ½ mile to 1 mile in length would tie the south end into more stable ground.

TECHNICAL REVIEWER COMMENTS:


Design – How long to do this? Reply: About five to seven years to complete.

The time to implement could be condensed. Trees are a main issue related to this alternative.

IMPLEMENTATION CONSIDERATIONS:

Additional geotechnical investigations would be required to determine the exact location of the slide slip plane. Extensive environment mitigation will be required for damage to the State Park. Disposal areas are becoming difficult to find.

Implementation would be hindered by resistance from some organizations.

PERFORMANCE MEASURES SR 101 Roadway Stabilization	Caltrans				
TITLE: Through Cut Excavation from PM 14.5 to 15.5	NUMBE A	R	PAGE NO. 4 of 6		
CRITERIA	Performance	Origina			
Right-of-Way	Measure	Degree	Degree		
Through cut will severely impact this portion of Del Norte Coast Redwoods	Rating	4	1		
State Park.	Weight	29	29		
	Contribution	116	29		
Maintainability	Measure	Degree	Degree		
Realigning the roadway behind the major slide plane will greatly increase stability.	Rating	6	8		
staomty.	Weight	24	24		
	Contribution	144	192		
Environmental Impact	Measure	Degree	Degree		
A minimum of 275 old growth redwoods may be removed by this alternative.	Rating	3	1		
	Weight	17	17		
	Contribution	51	17		
Aesthetics	Measure	Degree	Degree		
View of the ocean may be reduced, but opportunities for vista points and a trail on the existing alignment may be available.	Rating	6	4		
tian on the existing angument may be available.	Weight	12	12		
	Contribution	72	48		
Roadway Geometrics	Measure Degree		Degree		
Improve curve radii to current standards with occasional turnouts. Existing alignment is available for non-motorized use of the corridor.	Rating	7	8		
angument is available for non-motorized use of the confider.	Weight	9	9		
	Contribution	63	72		
Constructibility	Measure	Days	Days		
Conventional construction, with only major impacts at tie-in to existing alignment. Long-distance disposal of excavated material will slow	Rating	2	7		
construction.	Weight	9	9		
	Contribution	18	63		
Total Performance:		464	421		
Net Change in Perfor	mance:		-9%		

ASSUMPTIONS & CALCULA SR 101 Roadway Stabilizatio	Caltrans		
TITLE: Through Cut Excavation from PM 14.5 to1	5.5	NUMBER A	PAGE NO. 5 of 6
 Item quantities from 1995 PSR rounded up. Item costs from 1995 PSR escalated by 1.34 factor Portable, changeable, message signage added. Traffic and drainage items increased using engine Funds for partnering, value analysis, and Dispute 10% mobilization and 25% contingency added to Right-of-way costs escalated by 1.34 factor. 	ering judgment. Review Board added to es	timate.	
8. Environmental mitigation costs escalated by 1.34	factor.		
9. Capital outlay support costs 10% of roadway and	structure subtotals.		
10. Original PSR quantities for PM 15.0/15.6, but this theoretically double quantities. However, it is fell of two-lane roadway.		· · · · · · · · · · · · · · · · · · ·	

INITIAL COSTS SR 101 Roadway Stabilization							Caltrans		
Through Cut	NUMBER A	PAGE NO. 6 of 6							
CONSTRUCTION ELEMENT	A ERNATIVE C								
Description	Unit	Quantity	Cost/Unit	EPT Total		Cost/Unit	Total		
ROADWAY ITEMS	Unit	Quantity	Cost/Unit	Totai	Quantity	Cost/Unit	Total		
Roadway Excavation	M ³	36,000	\$15	\$540,000	2,900,000	\$12	\$34,800,000		
Traffic Control System	LS	1	\$2,000,000	\$2,000,000	1	\$1,809,500	\$1,809,50		
Class 1 Aggregate Sub base	M ³	4,600	\$25	\$115,000	4,600	\$25	\$115,00		
Class 2 Aggregate Base	M ³	1,900	\$35	\$66,500	2,000	\$35	\$70,00		
Asphalt Concrete	tonne	3,900	\$60	\$234,000	4,000	\$60	\$240,00		
Other roadway items (drainage, clear/grub, etc)	LS	1	\$95,000	\$95,000	1	\$965,000	\$965,000		
10% Mobilization	ea	1	\$0	\$0	1	\$3,799,950	\$3,799,950		
ROADWAY SUBTOTAL				\$3,050,500			\$41,799,450		
ROADWAY MARK-UP	35%			\$1,067,675			\$14,629,808		
VA ADDED MARK-UP				\$10,000			\$10,000		
ROADWAY TOTAL				\$4,128,175			\$56,439,258		
STRUCTURE ITEMS									
Tieback Walls	LS	1	\$26,400,000	\$26,400,000	1	\$3,180,000	\$3,180,00		
10% Mobilization	ea	1	\$2,640,000	\$2,640,000	1	\$318,000	\$318,000		
STRUCTURE SUBTOTAL				\$29,040,000			\$3,498,000		
STRUCTURE MARK-UP	25%			\$7,260,000			\$874,500		
VA ADDED MARK-UP									
STRUCTURE TOTAL				\$36,300,000			\$4,372,500		
RIGHT-OF-WAY ITEMS									
Right-of-Way Acquisition		1	\$370,000	\$370,000	1	\$384,000	\$384,00		
Utility Relocation									
Relocation Assistance									
Demolition									
Title and Escrow Fees						0	<i></i>		
RIGHT-OF-WAY TOTAL				\$370,000	1	\$6,236,360	\$6,236,360		
ENVIRONMENTAL MITIGATION ITEMS		1	\$80,000	\$80,000	1	\$1,701,800	\$1,701,80		
CAPITAL OUTLAY SUPPORT ITEMS									
Reengineering and Redesign	0.1			\$4,087,818			\$4,147,05		
Project Engineering									
TOTAL				\$44,965,993			\$72,896,97		
TOTAL (Rounded)				\$44,966,000			\$72,897,00		
						SAVINGS	(\$27,931,00		

VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans
TITLE: Through Cut Excavation from PM 14.5 to 15.5	NUMBER A
 Team Member: Dan Adams I have reviewed this alternative and agree with it as it is written I have reviewed this alternative and suggest the following (or attached) changes 	

Team Member: Mike Eagan

I have reviewed this alternative and agree with it as it is writtenI have reviewed this alternative and suggest the following (or attached) changes

Team Member: Gary Garofalo

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Deborah Harmon

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Doug Jackson

 \blacksquare I have reviewed this alternative and agree with it as it is written

VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans
TITLE: Through Cut Excavation from PM 14.5 to 15.5	NUMBER A
 Team Member: Jon Kaneshiro ☑ I have reviewed this alternative and agree with it as it is written □ I have reviewed this alternative and suggest the following (or attached) changes 	

Team Member: Susan Morrison

☑ I have reviewed this alternative and agree with it as it is written

 \Box I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Aida Parkinson

 \blacksquare I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Michael Stapleton

 \blacksquare I have reviewed this alternative and agree with it as it is written

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Ca	ltrans
FUNCTION:	Align Roadway	IDEA NO. AR-3, 15, 23	ALTERNATIVE NO. B.1
TITLE:	Simpson Land Bypass without Tunnel		PAGE NO. 1 of 8

ORIGINAL CONCEPT:

Minor roadway realignment and stabilization with soldier pile tieback walls above and below the road. This is alternative 2B in the February 1995 PSR.

ALTERNATIVE CONCEPT:

These alternatives address the long-term stability problem by completely bypassing the landslide complex with a horizontal alignment to the east of the distressed slope area. There are two basic alignments proposed, one of which has two variations. The alternatives are a Simpson Bypass with and without a tunnel, and a Hamilton Road Bypass. Both alignments begin at the Wilson Creek Bridge at PM 12.5. The shorter of the two alignments, called the Simpson Bypass because it traverses private lands owned by Simpson Timber, rejoins the existing highway at PM 16.3. This realignment has two variations for the northerly terminus at PM 16.3. One variation uses a tunnel to pass beneath parkland to reduce impacts to old growth forest. The second proposed alignment, called the Hamilton Road alignment, traverses parklands primarily at the northern end, but it completely bypasses old growth forest. Bypass alternatives would allow the highway to be constructed on more stable ground, which would reduce traffic interruptions and delays from road failure and subsequent repairs. This would reduce long-term recurring maintenance costs.

Three bypass variations on two different alignments are proposed. All variations have a southerly terminus at the mouth of Wilson Creek (PM 12.5). The Simpson Bypass would be similar to the Alternative R alignment, as depicted on the Wilson Creeks Bluff Bypass in the 1994 Corridor Study (Alternative E in the 1987 PSR). This alignment has a northerly terminus at PM 16.3; this is one of the shortest feasible bypass alignments, but it still requires right-of-way through old growth forest in Del Norte Coast Redwoods State Park. A variation of this alternative includes a tunnel at the northern terminus as a way of minimizing the take of old growth trees. This alternative includes a half-mile long tunnel that would require the take of approximately six old growth trees within the Caltrans right-of-way for the construction of its northern portal.

This alternative, Simpson Land Bypass without a Tunnel (and variations), would construct a new two-lane alignment to the east of the present roadway, with the intent of avoiding or minimizing impacts to parklands, especially old growth forest.

		Initial Cost			Present Value Highway User Cost		Net Present Value		
Original Concept \$		\$44,966,00	\$	0	\$	0	\$	\$44,966,00	
Alternative Concept		\$	\$90,000,00	\$	0	\$	0	\$	\$90,000,00
Savings		\$	(\$45,034,000)	\$	0	\$	0	\$	(\$45,034,000)
Team Member:	Aida Parkin Doug Jackso		Discipline:		nmental ires Constructi	on	PERFORMANCE:		+31%

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Caltra	ins
TITLE:	Simpson Land Bypass without Tunnel	ALTERNATIVE NO. B.1	PAGE NO 2 of 8

ALTERNATIVE CONCEPT (Continued):

This alternative does not meet the project's original constraint to stay within the Caltrans alignment and right-ofway. It would require right-of-way from private landowners and parks. However, this alternative is considered because it is a long-term solution to the slope instability, which could be constructed close to modern highway standards, and it would have fewer impacts to park resources than realignment within or close to the existing right-of-way.

This alternative would allow the new highway to be constructed to a 50-mph design speed. The existing alignment would be relinquished to the parks for park users.

The Hamilton Road Bypass would attempt to avoid old growth forest by establishing a route through previously harvested timberlands, some of which are now within park boundaries. This route would be substantially longer, and it would join existing alignments at PM 12.5 at Wilson Creek and PM 22.5 at Hamilton Road.

ADVANTAGES:

- Long-term solution to stability problem
- Minimizes or avoids impacts to old growth trees
- Bypasses known major slide planes
- Reduces long-term recurring maintenance costs
- Reduces traffic delays and interruptions from repairs and major maintenance projects
- Building on stable grounds avoids potential for catastrophic failure that would result in long-term traffic delays and interruptions
- Road would be constructed with favorable geometrics
- Constructed with conventional methods, with potential for balanced cut and fill
- Road would presumably have improved maintainability if constructed on stable ground
- Retaining existing alignment would allow traffic flow without major construction delays during project construction
- Possible re-use of existing alignment for park purposes
- Maintains historic elements of existing highway that make it eligible for listing on the National Register

DISADVANTAGES:

- Does not meet purpose and need of SHOPP project
- Requires substantial project funding
- Might require legislation to establish a demonstration project, like Prairie Creek Bypass, in order to obtain necessary funding.
- Requires right-of-way from private landowners and/or parks
- The short bypass (Simpson) without a tunnel would adversely affect more old growth trees and endangered species that are old-growth dependent, but it is less costly than a longer bypass (Hamilton Road) that does not affect old growth forest
- Stormwater management measures are likely to be expensive due to the amount of new ground disturbance

VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization

Caltrans

DISCUSSION / JUSTIFICATION:

Bypass alternatives may be one of the few technically feasible long-term engineering solutions to the stability problem posed by the current alignment. The bypass options would minimize, if not eliminate, road closures due to slides. A bypass could be constructed with conventional techniques and would allow traffic flow on the existing alignment during bypass construction. Recurring maintenance and repair costs for the existing alignment would be reduced, but substantial project funding would be required. Funding for the SR 101 bypass around Prairie Creek Redwoods State Park was obtained through legislation for a demonstration project.

It is not possible to determine the timing or extent of a catastrophic road failure. In the event of a widespread catastrophic failure that might occur in a large subduction earthquake or major winter storm that produces widespread flooding and road failures, emergency funding might be available. However, this cannot be assumed for project planning purposes. Re-opening a route following catastrophic road failure might require weeks, which would create significant problems for Del Norte County and travelers and businesses located in southwestern Oregon and northwestern California. The proposed bypass alternatives avoid the problems associated with road closures of long duration, as well as the shorter delays and interruptions associated with maintenance and repair of the existing road. A bypass would be designed with wider shoulders than the current alignment. Wider shoulders would accommodate bicyclists and would substantially improve bicyclist safety. Alternatively, bicyclists could use the current alignment, which would have less through traffic and probably no commercial traffic.

Environmental groups and park agencies have consistently requested that Caltrans study bypass options as a long-term solution to avoid impacts to parklands from repairs required by slope failures on the existing alignment, and from highway improvements needed to accommodate modern transportation. Bypass alternatives all require some park right-of-way, because parklands extend in a strip along the coast between Klamath and Crescent City. However, some parklands, mostly in the National Park but also east of the Alder Campground on Mill Creek in Del Norte Coast Redwoods State Park, have been previously harvested, so that an alignment might be planned that avoids or minimizes impacts to old growth trees.

Impacts to old growth trees would be difficult to mitigate through purchase of private tracts of old growth, because there is very little old growth redwood forest remaining in private ownership.

The existing highway alignment is eligible for listing on the National Register of Historic Places. Bypassing the current alignment would retain the historic character of the existing highway. Continual repairs to the existing highway over the long term might adversely affect the historic character.

A bypass would not feature the ocean views available on the current alignment. However, constructing a bypass offers the opportunity to create a world-class travel experience, which is one of the goals in the 2000 Redwood National and State Parks General Management Plan/General Plan.

The shorter (Simpson) bypass would improve the experience of hikers on the California Coastal Trail, because these hikers would not have to cross through the traffic on the existing highway around post mile 15.7. The Hamilton Road Bypass offers the opportunity to provide a pedestrian highway crossing that would connect the Coastal Trail with the Inland Trail systems in Redwood National and State Parks and Smith River NRA.

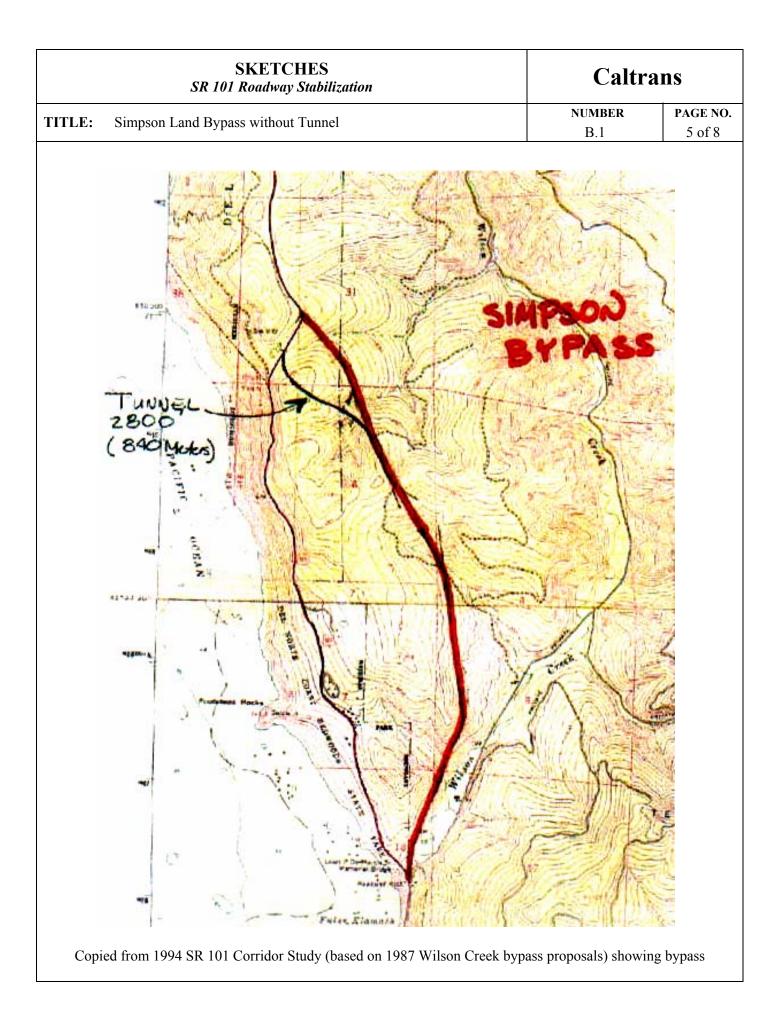
Performance measures were not computed for the Hamilton Road Bypass because this project is currently infeasible from an economic and political standpoint due to its length and required right-of-way. A rough estimate of the cost of this option would be \$240,000,000.

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Caltra	ns
TITLE:	Simpson Land Bypass without Tunnel	ALTERNATIVE NO. B.1	PAGE NO 4 of 8

TECHNICAL REVIEWER COMMENTS:

Right-of-Way: Some right-of-way will be required, and it would be very difficult to acquire.

Friends of Del Norte County: How long will it take to be built? Reply: The key is money for building the road, which is uncertain; it could be SHOPP or it could be STIP.


Friends of Del Norte County: Were the significant impacts to Wilson Creek considered? Reply: Yes. Items such as avoiding the slide plane and park impacts were considered.

IMPLEMENTATION CONSIDERATIONS:

Right-of-way take from Simpson would be politically difficult. Any right-of-way take inside or outside the parks would probably require legislation, because neither the park agencies nor the private landowners would willingly relinquish right-of-way. Obtaining right-of-way for the Highway 101 bypass around Prairie Creek Redwoods State Park required condemnation. Legislation would also be likely to obtain funding for construction of this as a demonstration project, because the costs are significantly greater than could be funded out of Caltrans District 1 typical funding.

Any impacts to old growth trees would be opposed by environmental groups and park agencies. The two shorter bypass alternatives that re-join the highway at post mile 16.3 require some take of old growth trees, although the tunnel would affect fewer trees.

May require Legislative action to acquire right-of-way.

PERFORMANCE MEASURES SR 101 Roadway Stabilization		Caltrar	15	
TITLE: Simpson Land Bypass without Tunnel	NUMBE	R	PAGE NO.	
CRITERIA	B.1 Performance	Original	6 of 8 Alternative	
		-	Degree	
Right-of-Way:		MeasureDegreeRating4		
Requires take of parklands for right-of-way.	Rating		3	
	Weight	29	29	
	Contribution	116	87	
Maintainability:	Measure	Degree	Degree	
This is a new facility that avoids known unstable areas altogether.	Rating	6	10	
	Weight	24	24	
	Contribution			
Environmental Impact:	Measure	Degree	Degree	
This alternative requires substantial tree takes, including some old growth	Rating	3	3	
redwoods at PM 16.3 where the bypass rejoins the current alignment. There will also be substantial impact to threatened and endangered species from	Weight	17	17	
impacts to both old growth trees and to large second growth trees that meet the definition of suitable habitat for owls.	Contribution	51	51	
Aesthetics:	Measure Degree		Degree	
	Rating	6	5	
	Weight	12	12	
	Contribution	72	60	
Roadway Geometrics:	Measure	Degree	Degree	
This is a new facility with eight-foot shoulders that will better accommodate	Rating	7	9	
non-motorized travel. Design speed will be increased to 50 mph.	Weight	9	9	
	Contribution	63	81	
Constructibility:	Measure	Degree	Degrees	
Delays only for joining bypass to the current alignment.	Rating	2	10	
, , , , , , , , , , , , , , , , , , ,	Weight	9	9	
	Contribution	18	90	
Total Performance:		464	609	
Net Change in Perfor	mance:		+31%	

	ASSUMPTIONS & CALCULATIONS SR 101 Roadway Stabilization	Caltı	rans
TITLE:	Simpson Land Bypass without Tunnel	NUMBER B.1	PAGE NO. 7 of 8

Define "catastrophic failure" to mean that both lanes are closed or lost, and that re-opening the road to one-way traffic will take more than two weeks; or that any failure is wider than can be bridged by a Bailey bridge or other temporary bridge that can be hauled in. We are assuming a single catastrophic failure rather than an initial failure followed by a series of additional failures so that re-opening the road would require considerable time.

Minimum right-of-way needed = 150 feet in width

Two lane facility, 8-foot shoulders, 50-mph design speed

Length of Simpson Bypass = 4 miles (southerly terminus PM 12.5, northerly PM 16.3). The bypass without tunnel assumes that a structure is needed at the north end to minimize tree take. Both Simpson Bypass alternatives assume a bridge at Wilson Creek at the south end.

 $(4 \text{ miles x } 5,280 \text{ ft/mi x } 150 \text{ ft})/43,560 \text{ ft/ac} = approximately 72 acres total right-of-way required, including 3 acres of old growth redwoods.}$

Redwood National Park right-of-way at the Wilson Creek terminus does not include old growth redwood forest, but it was not included in right-of-way estimate. Park right-of-way is not equivalent to old growth tree impacts. Del Norte Redwoods State Park is assumed to have more old growth trees than National Park lands along the highway alignment, although the eastern part of the State Park does include some previously harvested lands.

The Simpson Bypass with tunnel (Idea AR-15) includes a half-mile tunnel under parkland at the northerly terminus, but it would still require park right-of-way (largely subterranean easement) and impacts to old growth forest for the north tunnel portal.

Will need design exceptions in order to construct a 50-mph road that does not meet current design standards for design speed.

Assumes balanced cut and fill to avoid disposal costs.

Any of the proposed bypass alternatives would have improved geometrics, including shoulders wider than on the existing alignment.

Wider shoulders could accommodate bicyclists.

Existing alignment would be relinquished to parks for park use.

Cost figures are based on the 1987 Wilson Creek Bluffs PSR alternative "E" using an escalation factor of 2.09 to account for a six percent increase over 15 years.

INITIAL COSTS SR 101 Roadway Stabilization						Caltrans	
	NUMBER B(1)	PAGE NO. 8 of 8					
Simpson Land Bypass without Tunnel							
CONSTRUCTION ELEMENT							ONCEPT
Description	Unit	Quantity	Cost/Unit	Total	Quantity	Cost/Unit	Total
ROADWAY ITEMS Roadway Excavation	M ³	36,000	\$15	\$540,000			\$
Traffic Control System	LS	30,000	\$2,000,000	\$2,000,000			\$
Class 1 Aggregate Subbase	M ³	4,600	\$2,000,000	\$115,000			\$
Class 2 Aggregate Base	M ³	1,900	\$35	\$66,500			\$
Asphalt Concrete	tonne	3,900	\$60	\$234,000			\$
Other roadway items (drainage, clear/grub, etc.)	LS	1	\$95,000	\$95,000			\$
10% Mobilization	ea	1	\$0	\$0			\$
ROADWAY SUBTOTAL				\$3,050,500			\$0
ROADWAY MARK-UP	35%			\$1,067,675			\$
VA ADDED MARK-UP				\$10,000			\$0
ROADWAY TOTAL				\$4,128,175			\$72,000,000
STRUCTURE ITEMS							
Tieback Walls	LS	1	\$26,400,000	\$26,400,000			\$
10% Mobilization	ea	1	\$2,640,000	\$2,640,000			\$
STRUCTURE SUBTOTAL				\$29,040,000			\$(
STRUCTURE MARK-UP	25%			\$7,260,000			\$(
VA ADDED MARK-UP				\$0			\$(
STRUCTURE TOTAL				\$36,300,000			\$17,000,000
RIGHT-OF-WAY ITEMS							
Right-of-Way Acquisition		1	\$370,000	\$370,000	1	\$1,000,000	\$1,000,00
Utility Relocation							
Relocation Assistance							
Demolition							
Title and Escrow Fees				**			<u> </u>
RIGHT-OF-WAY TOTAL				\$370,000			\$1,000,000
ENVIRONMENTAL MITIGATION ITEMS		1	\$80,000	\$80,000			\$
CAPITAL OUTLAY SUPPORT ITEMS							
Reengineering and Redesign	0.1			\$4,087,818			\$
Project Engineering	0.1			\$1,007,010			¢
TOTAL				\$44,965,993			\$90,000,00
TOTAL (Rounded)				\$44,966,000			\$90,000,00
	•					SAVINGS	(\$45,034,00

VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization

TITLE:	Simpson Land Bypass without Tunnel
--------	------------------------------------

NUMBER B.1

Team Member: Dan Adams

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Mike Eagan

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Gary Garofalo

 \square I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Deborah Harmon

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Doug Jackson

 \blacksquare I have reviewed this alternative and agree with it as it is written

VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans
TITLE: Simpson Land Bypass without Tunnel	NUMBER B.1
 Team Member: Jon Kaneshiro ☑ I have reviewed this alternative and agree with it as it is written □ I have reviewed this alternative and suggest the following (or attached) changes 	

Team Member: Susan Morrison

☑ I have reviewed this alternative and agree with it as it is written

 \Box I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Aida Parkinson

 \square I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Michael Stapleton

 \blacksquare I have reviewed this alternative and agree with it as it is written

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Ca	ltrans		
FUNCTION:	Align Roadway	gn Roadway IDEA NO. AR-3, 15, 23			
TITLE:	Simpson Bypass with Tunnel		PAGE NO. 1 of 7		

ORIGINAL CONCEPT:

Minor roadway realignment and stabilization with soldier pile tieback walls above and below the road. This is alternative 2B in the February 1995 PSR.

ALTERNATIVE CONCEPT:

This alternative does not meet the project's original constraint to stay within the Caltrans alignment and right-ofway. However, this alternative is considered because it is a long-term solution to the slope instability that would have fewer impacts to park resources than a realignment within or close to the existing right-of-way.

Under this alternative and variations, a new two-lane alignment would be constructed to the east with the intent of avoiding or minimizing impacts to parklands, especially old growth forest. This alternative would allow the highway to be constructed on more stable ground, which would reduce traffic interruptions and delays from road failure and subsequent repairs. This would reduce long-term recurring maintenance costs.

This alternative would allow the new highway to be constructed to a 50-mph design speed. The existing alignment would be relinquished to the parks for park uses. Bypass alternatives require right-of-way from private landowners and parks.

The bypass variations have a southerly terminus at the mouth of Wilson Creek (post mile 12.5). One variation, which we have identified as the Simpson Bypass, would be similar to the Alternative R alignment as depicted on the Wilson Creeks Bluff Bypass in the 1994 Corridor Study (Alternative E in the 1987 PSR). This alignment has a northerly terminus at post mile 16.3; this is one of the shortest feasible bypass alignments, but it still requires right-of-way through old growth forest in Del Norte Coast Redwoods State Park. A variation of this alternative includes a tunnel at the northern terminus as a way of minimizing the take of old growth trees. This alternative includes a half-mile long tunnel that would require the take of approximately six old growth trees within the Caltrans right-of-way for the construction of its northern portal.

COST SUMMARY		InitialPresent ValueCostSubsequent Cost		Present Value Highway User Cost		Net Present Value			
Original Conce	pt	\$	44,966,000	\$	0	\$	0	\$	44,966,000
Alternative Con	cept	\$	137,000,000	\$	0	\$	0	\$	137,000,000
Savings		\$	(92,034,000)	\$	0	\$	0	\$	(92,034,000)
Team Member:	Aida Parkinso Doug Jackson		Discipline:	Environ Structur	mental es Constructi	on	PERFORMANCE:		+19%

VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization

TITLE: Simpson Bypass with Tunnel

Caltrans

ADVANTAGES:

- Long-term solution to stability problem
- Tunnel is outside all known slide planes
- Reduces long-term recurring maintenance costs
- Reduces traffic delays and interruptions
- Building on stable grounds avoids potential for catastrophic failure that would result in long-term traffic delays and interruptions
- Road would have favorable geometrics
- Constructed with conventional methods, with potential for balanced cut and fill
- Road would presumably have improved maintainability if constructed on stable ground
- Existing alignment would allow traffic flow without major construction delays during project construction
- Possible reuse of existing alignment for park purposes
- Maintains historic elements of existing highway that make it eligible for listing on the National Register

DISADVANTAGES:

- Does not meet purpose and need of SHOPP project
- Requires substantial project funding
- Requires right-of-way from private landowners and/or parks

ALTERNATIVE NO.

B.2

- Might require legislation to establish a demonstration project, like the Prairie Creek Bypass, in order to obtain necessary funding
- Stormwater management measures likely to be expensive due to amount of new ground disturbance
- Curve radius is less than standard at approximately 80 kph
- SSD with 2.4-m shoulder is ~95 m and less than 130 standard

DISCUSSION / JUSTIFICATION:

Bypass alternatives may be one of the few technically feasible long-term engineering solutions to the stability problem posed by the current alignment. A bypass could be constructed with conventional techniques and would allow traffic flow on the existing alignment during bypass construction. Recurring maintenance and repair costs for the existing alignment would be reduced, but substantial project funding would be required. Funding for the Prairie Creek Bypass was obtained through legislation for a demonstration project.

It is not possible to determine the timing or extent of a catastrophic road failure. In the event of a widespread catastrophic failure as might occur in a large subduction earthquake or major winter storm that produces widespread flooding and road failures, emergency funding might be available, but this cannot be factored into project planning. Re-opening a route following catastrophic road failure might require weeks, which would create significant problems for Del Norte County and travelers and businesses in southwestern Oregon and northwestern California.

Environmental groups and park agencies have consistently requested that Caltrans study bypass options as a long-term solution to avoid impacts to parklands from repairs required by slope failures on the existing alignment, and from highway improvements needed to accommodate modern transportation. Bypass alternatives all require some park right-of-way, because parklands extend in a strip along the coast between Klamath and Crescent City. However, some parklands, mostly in the National Park, have been previously harvested, so that an alignment might be planned that avoids or minimizes impacts to old growth trees.

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Caltrans		
TITLE:	Simpson Bypass with Tunnel	ALTERNATIVE NO. B.2	PAGE NO 3 of 7	

DISCUSSION / JUSTIFICATION (Continued):

Impacts to old growth trees would be difficult to mitigate through purchase of private tracts of old growth, because there is very little old growth redwood forest remaining in private ownership.

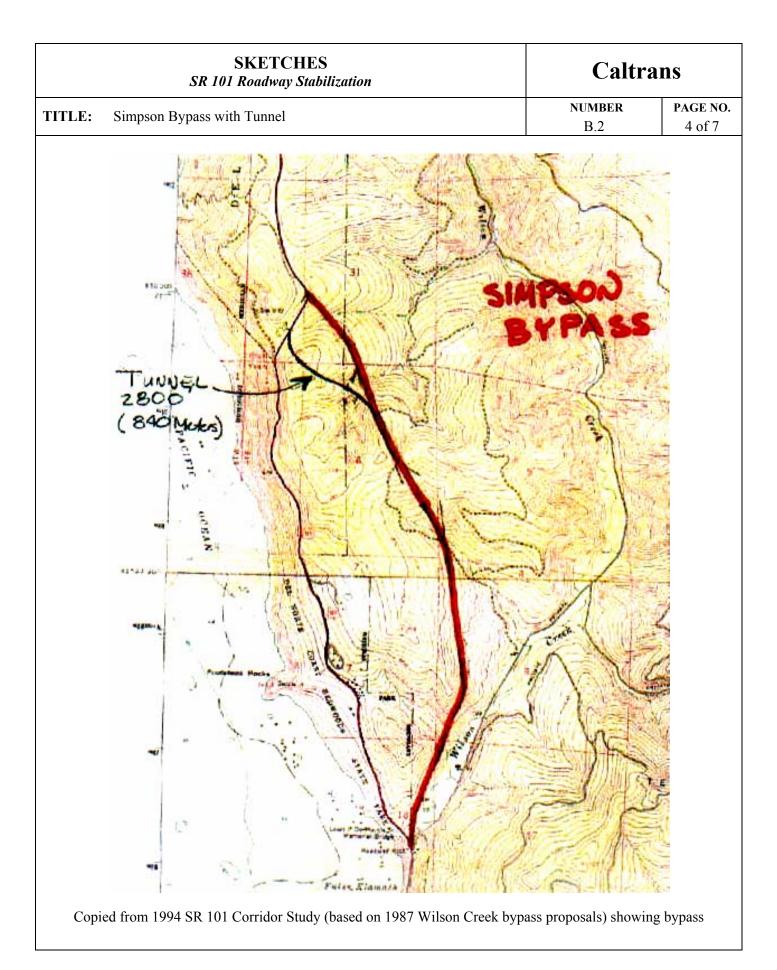
The existing highway alignment is eligible for listing on the National Register of Historic Places. Bypassing the current alignment would retain the historic character of the existing highway. Continual repairs to the existing highway over the long term might adversely affect the historic character.

A bypass would not feature the ocean views available on the current alignment. A bypass would be designed with wider shoulders than the current alignment. Wider shoulders would accommodate bicyclists and would substantially improve bicyclist safety.

The shorter (Simpson) bypass would improve the experience of hikers on the California Coastal Trail, because these hikers would not have to cross the primary highway around post mile 15.7.

TECHNICAL REVIEWER COMMENTS:

Right-of-Way – Some right-of-way will be required, and it would be very difficult to acquire.


Friends of Del Norte County – How long will it take to be built? Reply: The key is money for building the road, which is uncertain; it could be SHOPP or it could be STIP.

Friends of Del Norte County – Were the significant impacts to Wilson Creek considered? Reply, yes. Items such as avoiding the slide plane and park impacts were considered.

IMPLEMENTATION CONSIDERATIONS:

Right-of-way take from Simpson would be politically difficult. Prairie Creek Bypass required condemnation to obtain right-of-way.

Any impacts to old growth trees are viewed unfavorably by environmental groups and park agencies.

PERFORMANCE MEASURES SR 101 Roadway Stabilization	(Caltrar	IS	
TITLE: Simpson Bypass with Tunnel	NUMBEI B.2	R	PAGE NO. 5 of 7	
CRITERIA	Performance	Original	Alternative	
Right of Way:	Measure	Degree	Degree	
	Rating 10		8	
	Weight	29	29	
	Contribution	290	232	
Maintainability:	Measure	Degree	Degree	
This is a new facility that avoids unstable areas altogether.	Rating	1	10	
This is a new racinity that avoids unstable areas anogether.	Weight	24	24	
	Contribution	24	240	
Environmental Impact:	Measure	Degree	Degree	
This alternative takes trees but substantially fewer old growth than the non-	Rating	8	6	
tunnel Simpson alternative. Impacts to parklands are lessened because it	Weight	17	17	
requires a subterranean easement over most of its length.	Contribution	136	102	
Aesthetics:	Measure	Measure Degree		
	Rating	5	6	
	Weight	12	12	
	Contribution	60	72	
Roadway Geometrics:	Measure	Degree	Degree	
This is a new facility with eight-foot shoulders that will better accommodate	Rating	3	9	
non-motorized travel. Design speed will be increased to 50 mph.	Weight	9	9	
	Contribution	27	81	
Constructibility:	Measure	Degree	Degrees	
Construction of a tunnel will be slightly more difficult than the non-tunnel	Rating	10	8	
Simpson alternative.	Weight	9	9	
	Contribution	90	72	
Total Performance:		627	746	
Net Change in Perfor	rmance:		+19%	

ASSUMPTIONS & CALCULATIONS SR 101 Roadway Stabilization

Caltrans

NUMBER

B.2

TITLE: Simpson Bypass with Tunnel

Cost factors for this analysis are based on a straight alignment and do not include costs for a tunnel at the northern terminus.

Minimum right-of-way needed = 150 feet in width

Two lane facility, 8-foot shoulders, 50-mph design speed

Length of (Simpson) Bypass = 4 miles (southerly terminus pm 12.5, northerly pm 16.3). Assumes that a structure is needed at north end to minimize tree take.

(4 miles x 5,280 ft/mi x 150 ft)/43,560 ft/ac = approximately 72 acres total right-of-way, including 3 acres ofold growth redwoods.

RNP right-of-way at Wilson Creek terminus does not include old growth forest but was not included in rightof-way estimate. Park right-of-way is not equivalent to old growth tree impacts. Del Norte Redwoods State Park is assumed to have more old growth trees than National Park lands in this area.

The Simpson Bypass with tunnel discussed (AR 15) includes a half-mile tunnel under parkland at the northerly terminus, but it would still require park right-of-way (largely subterranean easement) and impacts to old growth forest for the north tunnel portal.

Will need design exceptions in order to construct a 50-mph road that does not meet current design standards.

Assumes balanced cut and fill to avoid disposal costs.

Any of the proposed bypass alternatives would have improved geometrics, including shoulders wider than on the existing alignment. Wider shoulders could accommodate bicyclists.

The existing alignment would be relinquished to parks for park use.

INITIAL COSTS SR 101 Roadway Stabilization						Cal	trans
TITLE Simpson Bypass with Tunnel							PAGE NO. 7 of 7
							ONCEPT
Description	Unit	Quantity	Cost/Unit	Total	Quantity	Cost/Unit	Total
ROADWAY ITEMS	Umt	Quantity	Cost/Unit	Total	Quantity	Cost/Onit	Total
Roadway Excavation	M ³	36,000	\$15	\$540,000			\$0
Traffic Control System	LS	1	\$2,000,000	\$2,000,000			\$0
Class 1 Aggregate Sub base	M ³	4,600	\$25	\$115,000			\$0
Class 2 Aggregate Base	M ³	1,900	\$35	\$66,500			\$0
Asphalt Concrete	tonne	3,900	\$60	\$234,000			\$0
Other roadway items(drainage, clear/grub, etc)	LS	1	\$95,000	\$95,000			\$0
10% Mobilization	ea	1	\$0	\$0			\$0
ROADWAY SUBTOTAL				\$3,050,500			\$0
ROADWAY MARK-UP	35%			\$1,067,675			\$0
VA ADDED MARK-UP				\$10,000			\$0
ROADWAY TOTAL				\$4,128,175			\$72,000,000
STRUCTURE ITEMS							
Tieback Walls	LS	1	\$26,400,000	\$26,400,000			\$0
10% Mobilization	ea	1	\$2,640,000	\$2,640,000			\$0
							¢
Tunnel							\$50,000
STRUCTURE SUBTOTAL				\$29,040,000			\$64,000,000
STRUCTURE MARK-UP	25%			\$7,260,000			
VA ADDED MARK-UP							
STRUCTURE TOTAL				\$36,300,000			\$64,000,000
RIGHT-OF-WAY ITEMS							
Right-of-Way Acquisition		1	\$370,000	\$370,000	1	\$1,000,000	\$1,000,000
Utility Relocation							
Relocation Assistance							
Demolition							
Title and Escrow Fees							
RIGHT-OF-WAY TOTAL				\$370,000			\$1,000,000
ENVIRONMENTAL MITIGATION ITEMS		1	¢00.000	¢00.000			
		1	\$80,000	\$80,000			\$0
CAPITAL OUTLAY SUPPORT ITEMS							
Reengineering and Redesign	0.1			\$4,087,818			\$0
Project Engineering							
TOTAL				\$44,965,993			\$137,000,000
TOTAL (Rounded)				\$44,966,000			\$137,000,000
						SAVINGS	(\$92,034,000

VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans
TITLE: Simpson Bypass with Tunnel	NUMBER B.2
Team Member: Dan Adams	
 I have reviewed this alternative and agree with it as it is written I have reviewed this alternative and suggest the following (or attached) changes 	

Team Member: Mike Eagan

I have reviewed this alternative and agree with it as it is writtenI have reviewed this alternative and suggest the following (or attached) changes

Team Member: Gary Garofalo

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Deborah Harmon

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Doug Jackson

 \blacksquare I have reviewed this alternative and agree with it as it is written

VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans
TITLE: Simpson Bypass with Tunnel	NUMBER B.2
 Team Member: Jon Kaneshiro ☑ I have reviewed this alternative and agree with it as it is written □ I have reviewed this alternative and suggest the following (or attached) changes 	

Team Member: Susan Morrison

 \square I have reviewed this alternative and agree with it as it is written

 \Box I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Aida Parkinson

 \square I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Michael Stapleton

 \blacksquare I have reviewed this alternative and agree with it as it is written

,	C	Caltrans			
FUNCTION:	Realign Roadway	IDEA NO. AR-2	ALTERNATIVE NO. C.1		
TITLE:	FITLE: One Large Diameter Bored Two-Lane Tunnel				
ORIGINAL	CONCEPT: ile tieback walls above and below the roadway. (Alternative "2	D" of 1005 DOD	、		
ose solutor p	The needed wants above and below the road way. (Internative 2		-)		
ALTERNAT	TVE CONCEPT:				
(12 meters w 644 meters.	: The PSR (1995) Alternative 1 provides for a relatively s ide by 11 meters high ID) two-lane tunnel with a total realign The Preliminary Geotechnical Report (PGR) (2001) evaluated a nment went through an active landslide.	nent length, inc	luding approaches of		
meters (5,200 (August 20-2 passed throug now appears	posed a longer tunnel (p. 22 and Figure 25) (and approach) align (p feet) long that would for the most part bypass the active land 3, 2001), the investigators (Gary Garofalo and Chris Willis) (h part of the old landslide mass. This older landslide mass, which to be <i>potentially active</i> to <i>active</i> . The proposed longer tunnel, the set than Alternative 1, which does not meet the requirements/gen kks.	Islide. However indicated the tr nich was once th "Alternative 1A	r, at the VA meeting unnel alignment still ought to be dormant, ", therefore, presents		

It should be noted that all tunnel concepts, including the original alternative, do not meet the project's original constraint to stay within the Caltrans alignment and right-of-way. All of the alternatives would at least require subsurface easements outside the right-of-way, if not more at the approaches to the tunnel portals.

Alternative: In Alternative 1A from the PGR, a large diameter single-bore tunnel is considered. The alignment would still pass, however, through the old landslide mass, which appears to be *potentially active* to *active*.

ADVANTAGES:

- Tunnels, although expensive, are environmentally friendly, as they provide little disruption to the surface environment, which is a specific advantage for this alignment
- Constructibility concerns with respect to standup time and the ability to span the excavation are better in better ground
- Limited tree and environmental impacts compared to some other alternatives
- Aesthetic advantage comes from relinquishing the existing alignment to parks for park purposes (recreation)
- Limited closure of roads during construction
- Reduces environmental impacts compared to other alternatives
- Out of right-of-way in terms of subsurface easements

COST SUMMARY			Initial Cost				Present Value Highway User Cost		Net Present Value
Original Concept	\$	45,41	19,000	\$	0	\$	0	\$	45,419,000
Alternative Concept	\$	177,93	31,000	\$	0	\$	0	\$	177,931,000
Savings \$ (13		(132,51	2,000)	\$	0	\$	0	\$	(132,512,000)
Team Member: Jon Kaneshiro		Dis	scipline:	Tunneling			PERFORMANC	E:	-14%

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Caltra	ins
TITLE:	One Large Diameter Bored Two-Lane Tunnel	ALTERNATIVE NO.	PAGE NO
	One Large Diameter Bored Two-Lane Tunner	C.1	2 of 8

DISADVANTAGES:

- This alternative assumes poor ground conditions; one large diameter bore will be more expensive than a double-bore tunnel.
- Security and risk of catastrophic failure is not eliminated, since the tunnels would still pass through a *potentially active* to *active* landslide (at least two and possibly four landslide slip planes).
- Deep slide slope stabilization measures, such as slope stressing, would still be required, especially at the southernmost landslide
- Approaches would be out of the right-of-way, and trees would still be impacted at portals and at slope stressing areas
- Reduces aesthetics (no view)
- Maintenance (ventilation, drainage, lighting and signaling costs)
- Fire and safety concerns
- Tunnel failure would result in a much longer closure
- Significant maintenance costs
- Expensive capital costs
- Fatal flaw would be no remediation of landslide plane

DISCUSSION / JUSTIFICATION:

Special measures may be taken to limit damage to the tunnel due to potential movement along the landslide shear plane. These include the following:

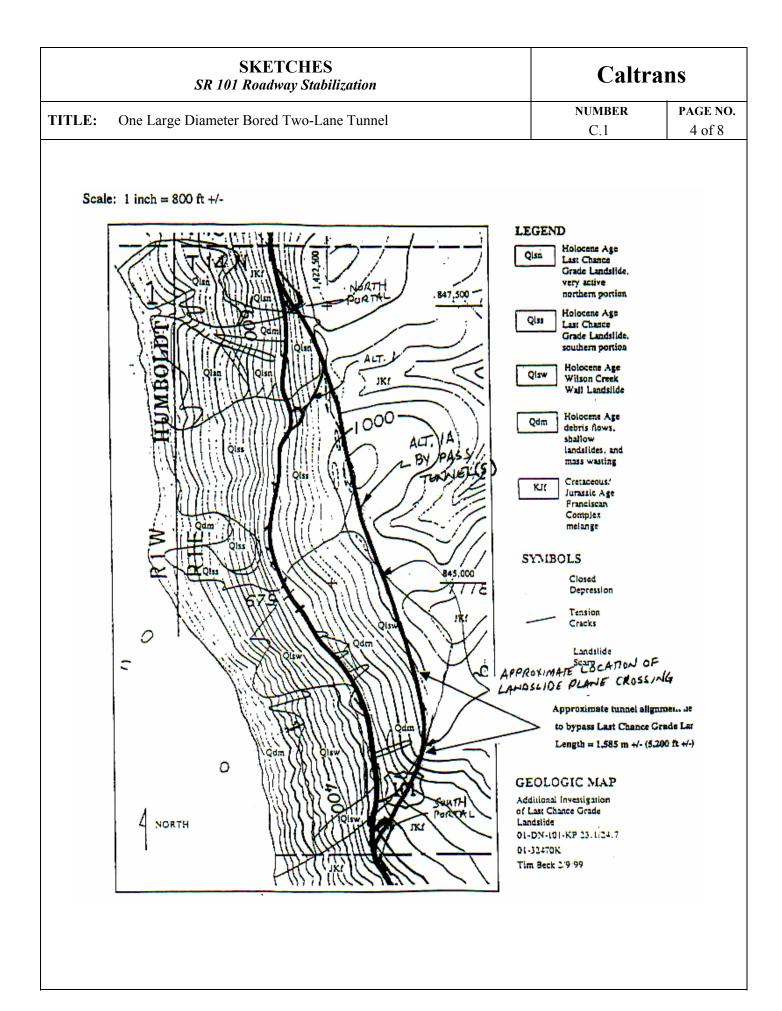
- Articulation of the liner by providing flexible construction joints
- Contingency plan for catastrophic event
- Deep slope stressing
- Portal stabilization

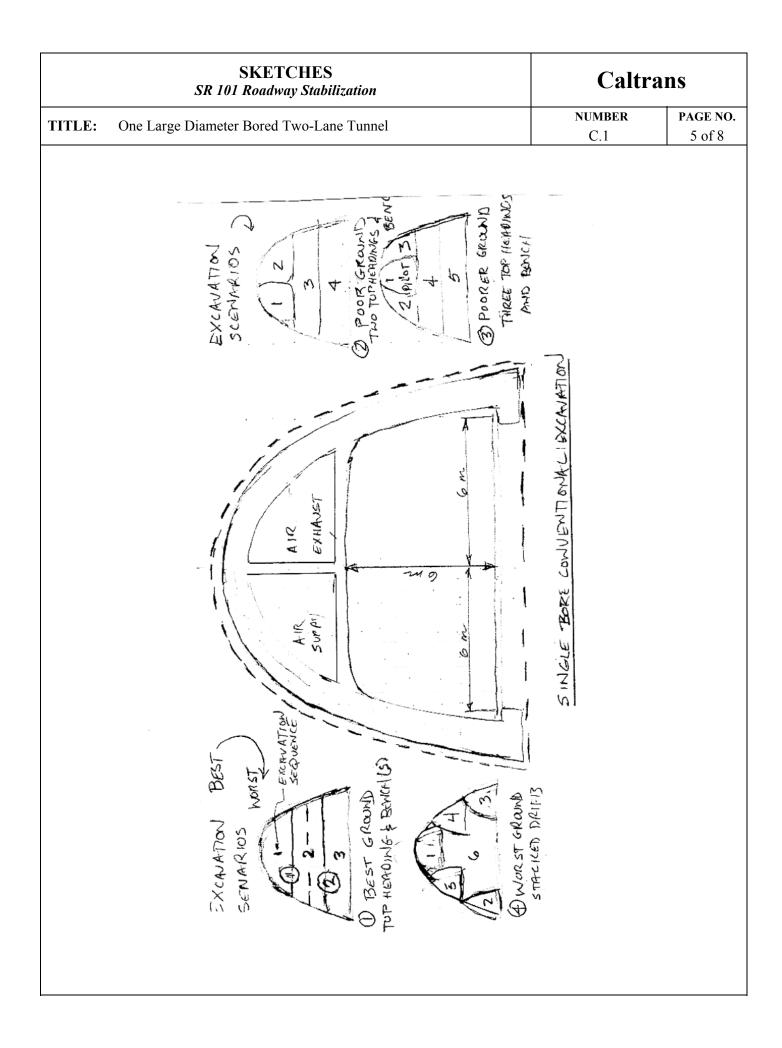
Construction in very poor and difficult ground:

- Several excavation scenarios are possible
- Sequential Excavation Method (SEM) or the New Austrian Tunneling Method (NATM), which are small incremental excavation units of the poor rock mass with flexible and easy to install initial support including rock bolts, wire mesh, lightweight steel girder, or H-beam or I-beam sets and shotcrete.
- Stacked Drift Small incremental excavations by SEM or NATM, as above, where the initial liner is formed around the perimeter of the larger excavation and eventually facilitates the initial support of the larger excavation.

This alternative assumes that the slide can be mitigated with slope stressing, which can be quite expensive. Since this has to be implemented anyway, consideration of a shorter tunnel with slope stressing may also be considered in the future.

VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Caltrans		
TITLE: One Large Diameter Bored Two-Lane Tunnel	ALTERNATIVE NO. C.1	PAGE NO 3 of 8	


TECHNICAL REVIEWER COMMENTS:


Design – A deep concern is that in the southern end of the project there are two slip planes that are potentially active. Problems with interfacing the tunnel with existing slides are anticipated.

Friends of Del Norte County – Environmental impacts at the portals are a concern. Construction may be hazardous e.g. underground work, gas, confined spaces. During the construction of the Collier Tunnel, lives were lost. There is considerable water and rain in this project area.

IMPLEMENTATION CONSIDERATIONS:

- Perform detailed engineering and geotechnical investigations, including implementation of the "observational method", to monitor landslide movements.
- Landslide stabilization at portals and deep slope stressing would also be recommended. Environmental disruption would be similar to Alternative D, Idea No. IS-11-15, etc., as would additional costs, but perhaps for a smaller or more limited area.
- Ventilation and fire safety are critical for long highway tunnels.
- An additional geotechnical contingency on costs is recommended because of the nature of subsurface construction. An additional 15%, as recommended by Sperry *Costing Contingencies* (Civil Engineering Magazine, April 1988) should be used during planning studies.

PERFORMANCE MEASURES SR 101 Roadway Stabilization		Caltra	laltrans		
TITLE: One Large Diameter Bored Two-Lane Tunnel	NUMBE C.1	R	PAGE NO. 6 of 8		
CRITERIA	Performance	Original	Alternative		
Right of Way:	Measure	Degree	Degree		
Same rating as twin-bore tunnels. Right-of-way impact is limited to portal approaches and stabilization measures near portals. Subsurface easement	Rating	4	5		
requirements are easy to obtain and do not truly impact adjacent properties.	Weight	29	29		
	Contribution	290	145		
Maintainability:	mability: Measure				
Slightly worse rating than twin-bore tunnels. Concern of through failure planes damaging tunnel liner, hence repairs and possible shutdowns. Also,	Rating	6	3		
there are significant ventilation, drainage, lighting, and signage costs.	Weight	24	24		
	Contribution	144	72		
Environmental Impact:	onmental Impact: Measure				
Same rating as twin-bore tunnels. Only impacts approaches to portals and portal stabilization areas. Slope stressing to stabilize landslide would also	Rating	3	5		
have temporary environmental impact.	Weight	17	17		
	Contribution	51	85		
Aesthetics:	Measure	Degree	Degree		
Same rating as twin-bore tunnels. No view, like twin bore, although there are benefits of gaining old alignment for parks and recreation.	Rating	6	3		
benefits of gaining old anglinient for parks and recreation.	Weight	12	12		
	Contribution	72	36		
Roadway Geometrics:	Measure	Degree	Degree		
Same rating as twin-bore tunnels. Essentially the same roadway geometrics. With a tunnel, obstacles will be difficult geology. We can align the tunnel for	Rating	7	5		
preferred roadway geometry.	Weight	9	9		
	Contribution	63	45		
Constructibility:	Measure	Degree	Days		
Slightly worse rating than twin-bore tunnels. A larger span is more difficult to build than smaller spans. Disposal issues and construction period over 4	Rating	2	2		
years.	Weight	9	9		
	Contribution	180	18		
Total Performance:		464	401		
Net Change in Perfor	mance:		-14%		

ASSUMPTIONS & CALCULATIONS SR 101 Roadway Stabilization	Caltrans			
· · · · · · · · · · · · · · · · · · ·	NUME	BER	PAGE NO.	
FITLE: One Large Diameter Bored Two-Lane Tunnel	C.1	1	7 of 8	
$\frac{\$28,351,000}{1,230 \text{ ft.}} = \$23,050/\text{ft.}$ $\frac{\$23,050}{1.25} = \$18,440/\text{ft. without 25\%} \qquad \text{Seems reasonable even for 2001 (jud)}$ Add 5% $\$19,362/\text{ft.} = \$63,500/\text{m} \qquad (\text{Seems reasonable, check below})$ Quantity Single Bore Conventional Excavation Excavation (counting squares from invert) Level 1 2 3 4 5 6 7 8 9 10 11 Qty (m ²) 16 16 15.5 15 14.5 14 13.5 13 12 11 9 Total $\cong 158.5 \text{ m}^3/\text{m}$	gment) 12 7	13 2		
Concrete Liner				
Footing $2 \times 2 \text{ m} = 4 \text{ m}^3/\text{m}$				
Arch $2 \times 1.2 \times 14 =$ $33.6 \text{ m}^3/\text{m}$				
Soffit/Vent 2(.3 m x 6 m) + .3 m x 3.5 m = $4.65 \text{ m}^3/\text{m}$				
$\Sigma = \frac{42.25 \text{ m}^3/\text{m}}{10^3 \text{ m}^3}$				
Check:				
Bare Excavation $100/cy = 131/m^3$ $158.5 \text{ m}^3/\text{m x } 131/m^3 = 20,763/m$ Arango et. al. (1992)) ≅ 35%			
Tunnel Liner $$400/cy = $524/m^3$				
$42.25 \text{ m}^3/\text{m x } \$524/\text{m}^3 = \$22,139/\text{m} \qquad (35.4\%) \neq 20\%$				
Initial Support (*Abramson's Slakey, 1990)				
*Cumberland Gap Tunnel very poor ground 47% Initial Liner 53% Final Liner				
$\begin{array}{ccc} 0.47/0.53 \text{ x } \$22,139 = \underbrace{\$19,632/m}_{\text{Total Tunnel}} & \underbrace{(31.4\%)}_{(100\%)} \neq 45\% \\ \end{array}$				

INITIAL COSTS SR 101 Pavement Stabilization							Caltrans		
		FLE	-			NUMBER	PAGE NO.		
One Large Dia	ameter E	Bored Two-La	ne Tunnel			C-1	8 of 8		
CONSTRUCTION ELEMENT		ORIG	INAL CONCI	EPT	ALT	ERNATIVE CONCEPT			
Description	Unit	Quantity	Cost/Unit	Total	Quantity	Cost/Unit	Total		
ROADWAY ITEMS									
Roadway Excavation	M ³	36,000	\$15	\$540,000	107,044	\$15	\$1,605,660		
Class 1 AS	M ³	4,600	\$25	\$115,000	5,199	\$25	\$129,975		
Class 2 AB	M ³	1,900	\$35	\$66,500	2,217	\$35	\$77,595		
AC	tonne	3,900	\$60	\$234,000	4,445	\$60	\$266,700		
Miscellaneous Items*	ls	1	\$95,000	\$95,000	1	\$123,000	\$123,000		
Traffic Control Systems	ls	1	\$2,000,000	\$2,000,000			\$2,202,930		
Subtotal				\$3,050,500					
Roadway Mobilization	%	0	\$3,050,500	\$305,050	2,202,930	\$0.10	\$220,293		
ROADWAY SUBTOTAL				\$3,355,550			\$2,423,223		
ROADWAY MARK-UP	35%			\$1,174,443			\$848,128		
VA ADDED MARK-UP	ls	1	\$10,000	\$10,000	1	\$10,000	\$10,000		
ROADWAY TOTAL				\$4,539,993			\$3,281,351		
STRUCTURE ITEMS									
Tunnel	m			\$0	1,585	\$63,500	\$100,647,500		
Disputes Review Board	ls			\$0	1	\$50,000	\$50,000		
Partnering	ls			\$0	1	\$100,000	\$100,000		
Maintain Traffic (4 years)	day			\$0	1,460	\$500	\$730,000		
Traffic Control	ls			\$0	1	\$2,100,000	\$2,100,000		
Slope Stressing	ls			\$0	1	\$13,000,000	\$13,000,000		
Tieback Walls	ls	1	\$26,400,000	\$26,400,000			\$0		
STRUCTURE SUBTOTAL				\$26,400,000			\$116,627,500		
STRUCTURE MARK-UP									
Mobilization	10%	0.10	\$26,400,000	\$2,640,000			\$11,662,750		
Subtotal				\$29,040,000					
Contingency	25%	0.25	\$29,040,000	\$7,260,000			\$29,156,875		
Subtotal				\$36,300,000			\$157,447,125		
RIGHT-OF-WAY ITEMS									
Right-of-Way Acquisition (1.34x\$528,000)*	ls	1	\$370,000	\$370,000	1	\$707,000	\$707,000		
Subsurface Easement (14 acresx\$5,000)	ls			\$0	1	\$70,000	\$70,000		
Relocation Assistance									
Demolition									
Title and Escrow Fees									
RIGHT-OF-WAY TOTAL				\$370,000			\$777,000		
ENVIRONMENTAL MITIGATION ITEMS									
1.34 x \$188,000 *	ls	1	\$80,000	\$80,000	1	\$250,000	\$250,000		
Subtotal R/W, STRUCT, R/W, Envr.				\$41,289,993			\$161,755,476		
CAPITAL OUTLAY SUPPORT ITEMS	10%			\$4,128,999			\$16,175,548		
Reengineering and Redesign									
Project Engineering									
TOTAL				\$45,418,992			\$177,931,024		
TOTAL (Rounded)				\$45,419,000			\$177,931,000		
				, , , , , , , , , , , , , , , , , ,		SAVINGS	(\$132,512,000		

SAVINGS (\$132,512,000)

VA TEAM ALTERNATIVE REVIEW SR101 Roadway Stabilization	Caltrans
TITLE: One Large Diameter Bored Two-Lane Tunnel	NUMBER C.1
Team Member: Dan Adams I have reviewed this alternative and agree with it as it is written I have reviewed this alternative and suggest the following (or attached) changes	

Team Member: Mike Eagan

I have reviewed this alternative and agree with it as it is writtenI have reviewed this alternative and suggest the following (or attached) changes

Team Member: Gary Garofalo

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Deborah Harmon

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Doug Jackson

 \blacksquare I have reviewed this alternative and agree with it as it is written

VA TEAM ALTERNATIVE REVIEW SR101 Roadway Stabilization	Caltrans
TITLE: One Large Diameter Bored Two-Lane Tunnel	NUMBER C.1
 Team Member: Jon Kaneshiro ☑ I have reviewed this alternative and agree with it as it is written □ I have reviewed this alternative and suggest the following (or attached) changes 	

Team Member: Susan Morrison

 \blacksquare I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Aida Parkinson

 \square I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Michael Stapleton

 \blacksquare I have reviewed this alternative and agree with it as it is written

	VALUE ANALYSIS ALTERNATIVE SR 101 Pavement Stabilization	Ca	ltrans
FUNCTION:	Realign Roadway (Bypass Traffic Tunnel Around Landslide)	IDEA NO. AR-11	ALTERNATIVE NO. C.2
TITLE:	Two Smaller Diameter Bored One-Way Tunnels		PAGE NO. 1 of 8

ORIGINAL CONCEPT:

Use soldier pile tieback walls above and below the roadway (Alternative "2B" of 1995 PSR)

ALTERNATIVE CONCEPT:

Background: The PSR (1995) Alternative 1 provides for a relatively short 375-meter long large diameter (12 meters wide by 11 meters high ID) two-lane tunnel with a total realignment length, including approaches of 644 meters. The Preliminary Geotechnical Report (PGR) (2001) evaluated Alternative 1 and determined that the proposed alignment went through an active landslide. The PGR proposed a longer tunnel (p. 22 and Figure 25) (and approach) alignment, which would be about 1,585 meters (5,200 feet) long that would, for the most part, bypass the active landslide. However, at the VA meeting (August 20-23, 2001), the investigators (Gary Garofalo and Chris Willis) indicated the tunnel alignment still passed through part of the old landslide mass. This older landslide mass, which was once thought to be dormant, now appears to be *potentially active* to *active*. The proposed longer tunnel, "Alternative 1A", therefore presents risks, albeit less than Alternative 1, which does not meet the requirements/goals/objectives of the project in terms of security/risks.

It should be noted that all tunnel concepts, including the original alternative, do not meet the project's original constraint to stay within the Caltrans alignment and right-of-way. All of the alternatives would at least require subsurface easements outside the right-of-way, if not more at the approaches, to the tunnel portals.

Alternative: Instead of a single highway tunnel, two smaller (6- to 7-meter ID) (7- to 8-m OD) diameter bores are proposed, on a similar alignment to the proposed Alternative 1A (see Idea No. AR-2, Alternative C-1). The alignment would still pass, however, through the old landslide mass, which appears to be *potentially active* to active.

ADVANTAGES:

- Although the proposed alternative still passes through the old landslide, the ability to repair a damaged portion of the tunnel is easier, which is a specific advantage of this alignment
- There may be less possible damage and risk to the individual bores in the event of a catastrophic event
- Tunnels, although expensive, are environmentally friendly, as they provide little disruption to surface environment
- This alternative offers all of the advantages of Alternative 1A, at a lower cost
- Constructibility concerns with respect to standup time (the ability to span the excavation) are better in better ground
- Limited tree and environmental impacts compared to many other alternatives
- Aesthetic advantage comes from relinquishing the existing alignment to parks for park purposes (recreation)
- Limited closure of roads during construction
- Saves environment compared to other alternatives
- Out of right-of-way in terms of subsurface easements

COST SUMMARY	UNINARY		InitialPresent ValueCostSubsequent Cost			nt Value y User Cost	Net Present Value	
Original Concept	iginal Concept \$		\$	0	\$	0	\$	45,419,000
Alternative Concept	\$	169,533,000	\$	0	\$	0	\$	169,533,000
Savings \$ (1		(124,114,000)	\$	0	\$	0	\$	(124,114,000)
Team Member: Jon Kaneshiro		Discipline:	Tunneling		PEF	RFORMANC	CE:	+2%

VALU	JE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Caltrans		
TITLE: Two Smal	ller Diameter Bored One-Way Tunnels	ALTERNATIVE NO. C.2	PAGE NO 2 of 8	

DISADVANTAGES:

- Security and risk of catastrophic failure is not eliminated, since the tunnels would still pass through a *potentially active*" to "*active* landslide (at least two and possibly four landslide slip planes)
- Deep slide slope stabilization measures, such as slope stressing, would still be required, especially at the southernmost landslide
- Approaches would be out of ROW and trees would still be impacted at portals and at slope stressing areas
- Reduces aesthetics (no view)
- Maintenance (ventilation, drainage, lighting and signaling costs)
- Fire and safety concerns
- Tunnel failure results in a much longer closure
- Significant maintenance costs
- Expensive capital costs
- Fatal flaw would be no remediation of landslide plane

DISCUSSION / JUSTIFICATION:

Special measures may be taken to limit damage to the tunnel due to potential movement along the landslide shear plane. This includes the following:

- Articulation of the liner by providing flexible construction joints
- Contingency plan for catastrophic event
- Deep slope stressing and portal stabilization

Savings of quantities compared to a single-bore tunnel are:

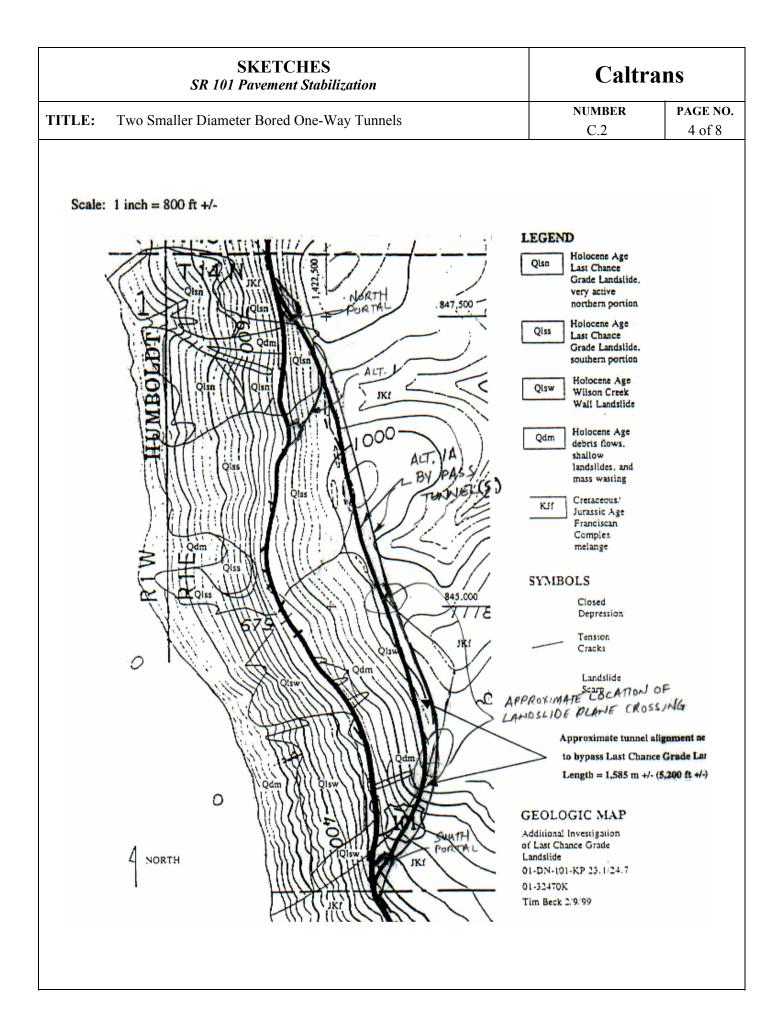
- About 13.5 cubic meters/meter of tunnel for excavation
- About 3.6 cubic meters/meter of tunnel for concrete liner

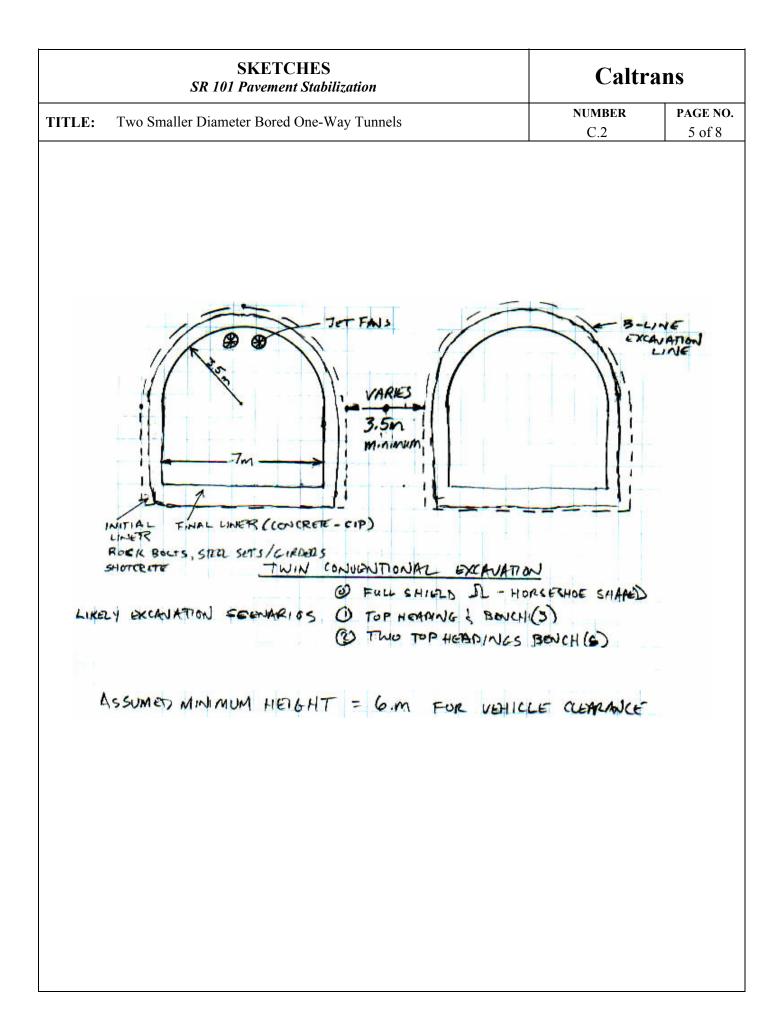
Construction in very poor and difficult ground:

- Easier to do in smaller spans compared to single bore
- A horseshoe-shaped shield may be used. Conceivably, a mechanized circular excavation may be used

This alternative assumes that the slide can be mitigated with slope stressing, which can be quite expensive. Since this has to be implemented anyway, consideration for a shorter tunnel with slope stressing may also be considered in the future.

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Caltrans		
TITLE:	Two Smaller Diameter Bored One-Way Tunnels	ALTERNATIVE NO. C.2	PAGE NO 3 of 8	


TECHNICAL REVIEWER COMMENTS:


Design – A deep concern is that in the southern end of the project there are two slip planes that are potentially active. Problems with interfacing the tunnel with existing slides are anticipated.

Friends of Del Norte County – Environmental impacts at the portals are a concern. Construction may be hazardous; e.g., underground work, gas, confined spaces. During the construction of the Collier Tunnel, lives were lost. Considerable water and rain in this project area.

IMPLEMENTATION CONSIDERATIONS:

- Perform detailed engineering and geotechnical investigations, including implementation of the "observational method" to monitor landslide movements.
- Landslide stabilization at portals and deep slope stressing would also be recommended. Environmental disruption would be similar to Alternative D, Idea No. IS-11-15, etc., as would additional costs, but perhaps for a smaller or more limited area.
- Ventilation and fire safety are critical for long highway tunnels
- An additional geotechnical contingency on costs is recommended because of the nature of subsurface construction. An additional 15%, as recommended by Sperry *Costing Contingencies* (Civil Engineering Magazine, April 1988) should be used during planning studies.

PERFORMANCE MEASURES SR 101 Pavement Stabilization	Caltrans			
TITLE: Two Smaller Diameter Bored One-Way Tunnels	NUMBER C.2		PAGE NO. 6 of 8	
CRITERIA	Performance	Original	Alternative	
Right of Way:	Measure	Degree	Degree	
Same rating as single-bore tunnel. Essentially, no change in right-of-way.	Rating	4	5	
	Weight	29	29	
	Contribution	116	145	
Maintainability:	Measure	Degree	Degree	
Slightly better rating than single-bore tunnel. Two tunnels allow traffic flow in another tunnel if severe distress should occur in one.	Rating	6	4	
in another tunnel if severe distress should occur in one.	Weight	24	24	
	Contribution	144	96	
Environmental Impact:	Measure	Degree	Degree	
Same rating as single-bore tunnel. Essentially, same approaches as a single-	Rating	3	5	
bore tunnel.	Weight	17	17	
	Contribution	51	85	
Aesthetics:	Measure	Degree	Degree	
Same rating as single-bore tunnel. No view, like a single bore, although there	Rating	6	3	
are benefits of gaining old alignment for parks and recreation.	Weight	12	12	
	Contribution	72	36	
Roadway Geometrics:	Measure	Degree	Degree	
Same rating as single-bore tunnel. Essentially the same roadway geometrics.	Rating	7	7	
	Weight	9	10	
	Contribution	63	70	
Constructibility:	Measure	Degree	Days	
Slightly better rating than single-bore tunnel. A smaller span, when standup	Rating	2	4	
time is poor, is easier to construct. Disposal issues and construction period over 4 years. Slight savings in material excavation and supply. A moderate	Weight	9	10	
amount of disposal of material compared to the through cut alternative at the top of the ridge.	Contribution	18	40	
Total Performance:	464	472		
Net Change in Perfor	mance:		+2%	

ASSUMPTIONS & CALCULATIONS SR 101 Pavement Stabilization	s Calt	Caltrans		
TITLE: Two Smaller Diameter Bored One-Way Tunnels	NUMBER	PAGE NO		
	C.2	7 of 8		
Quantity Twin Conventional Excavation				
Excavation				
<u>Π</u> (4.5 m) ² + 9 x 4.5 = 72.3 m ³ /m x 2 = 145 <u>m</u> ³				
2 m				
Concrete Liner (0.6 m thick)				
ARCH Π (3.8 m x 0.6 m) = 7.2 m³/m x 2 =14.3Walls2(3.8 m x 0.6) = 4.6 m³/m x 2 =9.1Invert.1 m x 7.6 = 7.6 m³/m x 2 =15.2				
Walls $2(3.8 \text{ m x } 0.6) = 4.6 \text{ m}^3/\text{m x } 2 =$ 9.1Invert.1 m x 7.6 = 7.6 m^3/m x 2 =15.2				
$\overline{38.6} \text{ m}^{3}/\text{m}$				
Excavation difference from single bore, see C-1*				
$\Delta = 13.5 \text{ m}^3/\text{m}$				
Liner:				
$\Delta = 3.6 \text{ m}^3/\text{m}$				
*Compared to single bore				
Excavation = $158.5 \text{ m}^3/\text{m}$				
Liner = $42.25 \text{ m}^3/\text{m}$				
Δ Exc. = <u>13.5</u> = 8.52%				
158.5 Use 8.5% savings				
Δ Liner = $\frac{3.6}{42.25}$ = 8.52%				
\$63,500 x (~91.5%) = \$58,100 Use \$58,500/m				

INITIAL COSTS REALIGN ROADWAY: (Bypass Traffic Tunnel Around Landslide)				Caltrans			
TITLE Two Smaller Diameter Bored One-Way Tunnels					NUMBER	PAGE NO.	
				C-2	8 of 8		
CONSTRUCTION ELEMENT	ONSTRUCTION ELEMENT ORIGINAL CONCEPT AL			ALT	TERNATIVE CONCEPT		
Description	Unit	Quantity	Cost/Unit	Total	Quantity	Cost/Unit	Total
ROADWAY ITEMS	3						
Roadway Excavation	M ³	36,000	\$15	\$540,000	107,044	\$15	\$1,605,660
Class 1 AS	M ³	4,600	\$25	\$115,000	5,199	\$25	\$129,975
Class 2 AB	M ³	1,900	\$35	\$66,500	2,217	\$35	\$77,595
AC	tonne	3,900	\$60	\$234,000	4,445	\$60	\$266,700
Miscellaneous Items (see next page)*	ls	1	\$95,000	\$95,000	1	\$123,000	\$123,000
Traffic Control Systems	ls	1	\$2,000,000	\$2,000,000			\$0
Subtotal				\$3,050,500			\$2,202,930
Roadway Mobilization	%	0	\$3,050,500	\$305,050			\$220,293
				¢2 255 550			¢4626152
ROADWAY SUBTOTAL ROADWAY MARK-UP	35%			\$3,355,550			\$4,626,153
		1	¢10.000	\$1,174,443	1	@10.000	\$1,619,154
VA ADDED MARK-UP	ls	1	\$10,000	\$10,000	1	\$10,000	\$100,000
ROADWAY TOTAL				\$4,539,993			\$6,345,307
STRUCTURE ITEMS	m			\$0	1,585	\$58,500	\$92,722,500
Disputes Review Board	ls			\$0	1	\$50,000	\$50,000
Partnering	ls			\$0	1	\$100,000	\$100,000
Maintain Traffic (4 years)	day			\$0	1,460	\$500	\$730,000
Traffic Control	ls			\$0	1	\$2,100,000	\$2,100,000
Slope Stressing	ls			\$0	1	\$13,000,000	\$13,000,000
Tieback Walls	ls	1	\$26,400,000	\$26,400,000			\$0
STRUCTURE SUBTOTAL				\$26,400,000			\$108,702,500
STRUCTURE MARK-UP							
Mobilization	10%			\$2,640,000			\$10,870,250
Subtotal				\$29,040,000			, .,,
Contingency	25%	0.25	\$29,040,000	\$7,260,000			\$27,175,625
Subtotal				\$36,300,000			\$146,748,375
RIGHT-OF-WAY ITEMS				¢20,200,000			\$110,710,270
Right-of-Way Acquisition (1.34x\$528,000)*	ls	1	\$370,000	\$370,000	1	\$707,000	\$707,000
Subsurface Easements (14 ac x \$5,000)	ls	1	\$570,000	\$0	1	\$70,000	\$70,000
Relocation Assistance	15			φŪ	1	φ/0,000	\$70,000
Demolition							
Title and Escrow Fees							
				\$270.000			\$777 000
RIGHT-OF-WAY TOTAL				\$370,000			\$777,000
ENVIRONMENTAL MITIGATION ITEMS							
1.34x\$188,000 *	ls	1	\$80,000	\$80,000	1	\$250,000	\$250,000
Subtotal				\$41,289,993			\$154,120,682
CAPITAL OUTLAY SUPPORT ITEMS	10%			\$4,128,999			\$15,412,068
Reengineering and Redesign							
Project Engineering							
TOTAL				¢45 419 000			¢160.522.756
	-			\$45,418,992			\$169,532,750
TOTAL (Rounded)				\$45,419,000			\$169,533,000
* = PSR, 1995, Alt 1						SAVINGS	(\$124,114,000

SAVINGS (\$124,114,000)

VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans		
TITLE: Two Smaller Diameter Bored One-Way Tunnels	NUMBER C.2		
Team Member: Dan Adams I have reviewed this alternative and agree with it as it is written I have reviewed this alternative and suggest the following (or attached) changes 			

Team Member: Mike Eagan

 \blacksquare I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Gary Garofalo

 \blacksquare I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Deborah Harmon

 \blacksquare I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Doug Jackson

 \square I have reviewed this alternative and agree with it as it is written

VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans
TITLE: One Large Diameter Bored Two-Lane Tunnel	NUMBER C.2
 Team Member: Jon Kaneshiro ☑ I have reviewed this alternative and agree with it as it is written □ I have reviewed this alternative and suggest the following (or attached) changes 	

Team Member: Susan Morrison

 \blacksquare I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Aida Parkinson

 \blacksquare I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Michael Stapleton

 \blacksquare I have reviewed this alternative and agree with it as it is written

 \Box I have reviewed this alternative and suggest the following (or attached) changes

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Ca	altrans
FUNCTION:	Stabilize Slope	IDEA NO. AR-12	ALTERNATIVE NO. D
TITLE:	Retaining Wall with Localized Limited Slope Stressing (Alternative 2A of PSR)	·	PAGE NO. 1 of 6
OPICINAL	CONCEPT.		•

ORIGINAL CONCEPT:

Use soldier pile tieback walls above and below the roadway. (Alternative 2B of 1995 PSR)

ALTERNATIVE CONCEPT:

On a slight realignment (i.e., fewer turns and longer tangent sections), construct a new roadway between post mile 15.0 and 15.6 using two means to stabilize the deep slide plane (but with minimal effect), and at the same time stabilize the shallow debris flows. A soldier pile wall and slope stressing, both having anchor tendons below the deep slide plane, would be employed. This alternative does not stabilize the deep slide plane to the south. This alternative is not recommended because it goes outside the Caltrans right-of-way and results in an unacceptable impact to old growth trees.

ADVANTAGES:

- Achieves some stability on deep slide plane (but very little)
- Achieves much stability against shallow slide planes
- Good roadway geometrics
- Reduces maintenance costs from existing
- Upslope aesthetics suffer for up to 20 years (until some regrowth occurs) but some restrictions on type of vegetation
- Provides uniform shoulder widths

DISADVANTAGES:

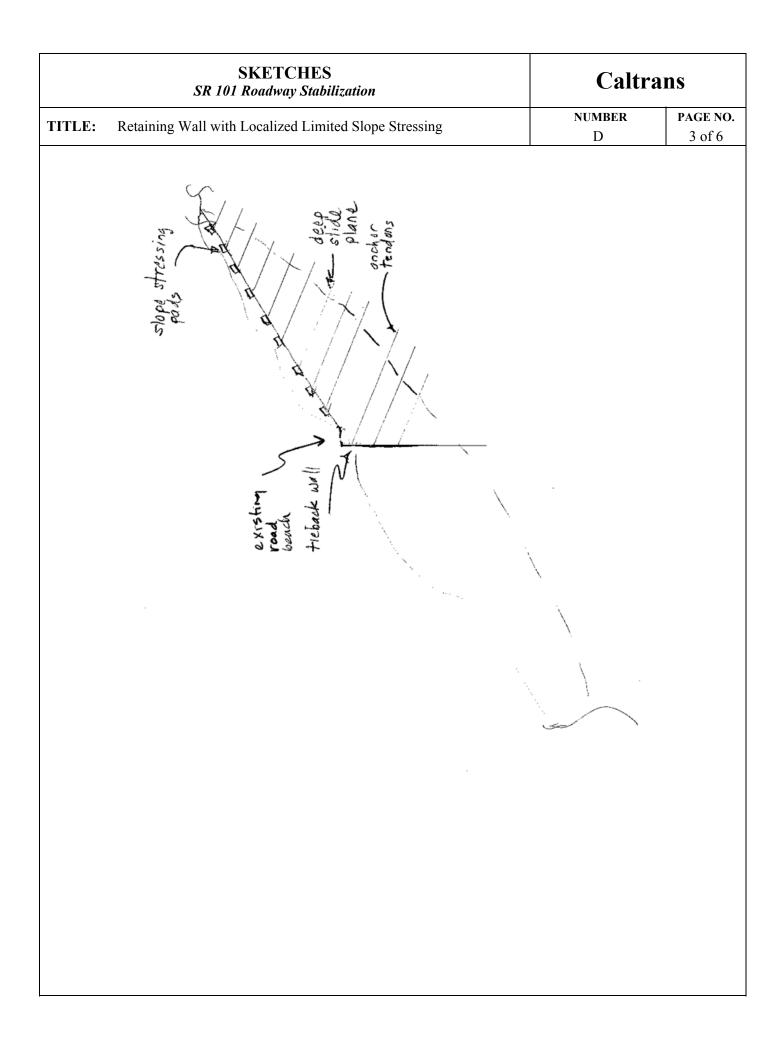
- Might fail in a design seismic event
- Some movement in severe rainfall events possible
- Major right-of-way take up slope from roadway (which could be planted)
- Construction over several seasons
- Very long piles, above-average difficulty to construct
- Same as above for tendons
- Clear cut above roadway
- Significant stormwater pollution prevention (SWPP) issues
- Some restrictions on revegetation potential of the area, likely not redwoods in some areas

COST SUMMARY		Initial Cost	Present Va Subsequent		Present Value ghway User Cost		Net Present Value
Original Concept	\$	44,966,000	\$	0	\$ 0	\$	44,966,000
Alternative Concept	\$	39,871,000	\$	0	\$ 0	\$	39,871,000
Savings	\$	5,095,000	\$	0	\$ 0	\$	5,095,000
Team Member: Gary Garofalo		Discipline:	Geotechnical		PERFORMANC	CE:	-19%

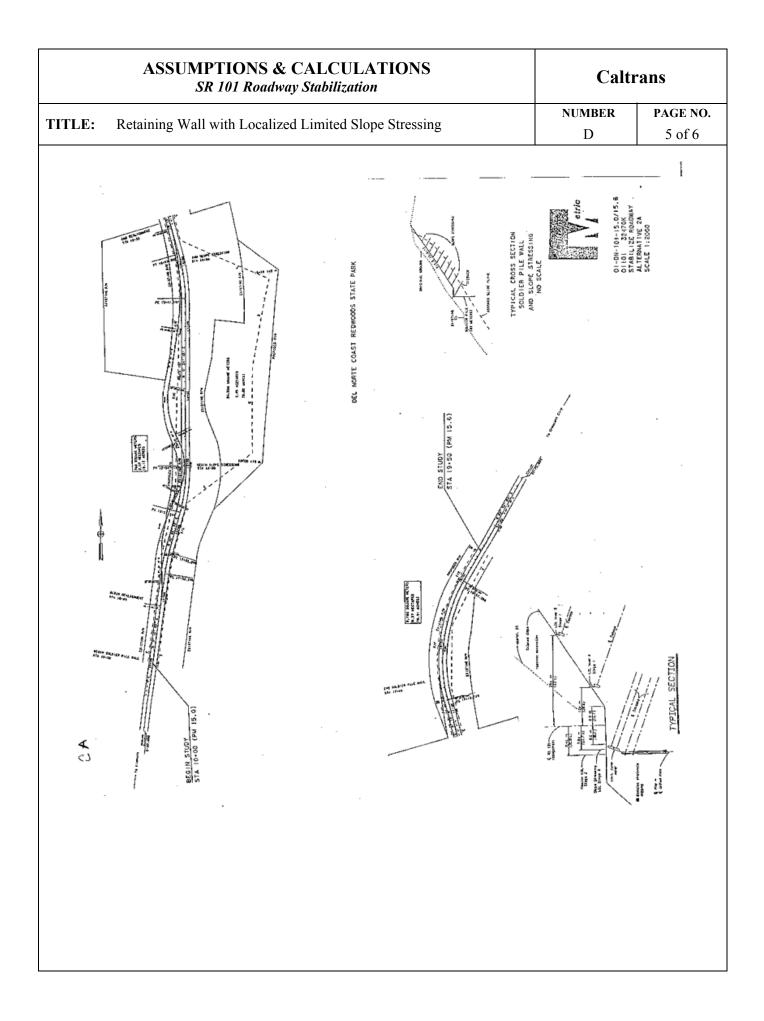
	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Caltra	ns
TITLE:	Retaining Wall with Localized Limited Slope Stressing	ALTERNATIVE NO. D	PAGE NO 2 of 6

DISCUSSION / JUSTIFICATION:

Allows a more stable roadway with less maintenance and traffic slowdowns. Stabilizes upslope (shallow) slide. Extremely deep slide plane presents major technical and cost challenges for this alternative. Possible major damage in a design earthquake is possible.


There is precedence, however, for using high-capacity anchors to stabilize a deep-seated landslide. Examples include PG&E's Belden Siphon, Manoa Slide (HI).

High capacity tendons are used in civil works to stabilize spillways.


TECHNICAL REVIEWER COMMENTS:

Design – This is point slope stabilization. Could possibly revegetate with a step approach.

IMPLEMENTATION CONSIDERATIONS:

PERFORMANCE MEASURES SR 101 Roadway Stabilization Caltrans					
TITLE: Retaining Wall with Localized Limited Slope Stressing	NUMBE	R I	PAGE NO.		
	D		4 of 6		
CRITERIA	Performance	Original	Alternative		
Right-of-Way:	Measure	Degree	Degree		
Significant take upslope from the existing roadway, denuding the hillside for slope stressing.	Rating	4	2		
Stope Stressing.	Weight	29	29		
	Contribution	116	58		
Maintainability:	Measure	Degree	Degree		
Would reduce seasonal maintenance due to shallow sliding (from PM 15.13 to 15.17 and 15.20 to 15.37).	Rating	6	6		
to 15.17 and 15.20 to 15.57).	Weight24Contribution144MeasureDegree	24			
	Contribution	144	144		
Environmental Impact:	Measure	Degree	Degree		
Significant park and old growth take.	Rating	3	2		
Significant park and old growth take.	Weight	17	17		
	Contribution	51	34		
Aesthetics:	Measure	Degree	Degree		
Walls and slope stressing are unappealing.	Rating	6	3		
	MeasureDegreeRating6Weight12	12	12		
	Contribution	72	36		
Roadway Geometrics:	Measure	Degree	Degree		
Improves vertical and horizontal profiles.	Rating	Rating 7			
	Weight	9	9		
	Contribution	63	72		
Constructibility:	Measure	Days	Days		
Difficulty maintaining traffic during construction.	Rating	2	4		
	Weight	9	9		
	Contribution	18	36		
Total Performance:		464	380		
Net Change in Perfor	mance:		-19%		

		L COSTS ay Stabiliz				Calt	trans	
Retaining Wall wit	TI	TLE				NUMBER	PAGE NO.	
			tope stressing			D	6 of 6	
CONSTRUCTION ELEMENT		ORIG	NAL CONCE	EPT	ALT	ERNATIVE C	ONCEPT	
Description	Unit	Quantity	Cost/Unit	Total	Quantity	Cost/Unit	Total	
ROADWAY ITEMS	3							
Roadway Excavation	M ³	36,000	\$15	\$540,000	463,000	\$15	\$6,945,00	
Traffic Control System	LS	1	\$2,000,000	\$2,000,000	1	\$2,000,000	\$2,000,00	
Class 1 Aggregate Subbase	M ³	4,600	\$25	\$115,000	4,600	\$25	\$115,00	
Class 2 Aggregate Base	M ³	1,900	\$35	\$66,500	1,900	\$35	\$66,50	
Asphalt Concrete	tonne	3,900	\$60	\$234,000	3,900	\$60	\$234,00	
Other roadway items (drainage, clear/grub, etc.)	LS	1	\$95,000	\$95,000	1	\$388,000	\$388,00	
Maintain Traffic	LS				1	\$250,000	\$250,00	
10% Mobilization	ea	1	\$0	\$0	1	\$999,850	\$999,85	
ROADWAY SUBTOTAL				\$3,050,500			\$10,998,35	
ROADWAY MARK-UP	35%			\$1,067,675			\$3,849,42	
VA ADDED MARK-UP				\$10,000			\$10,00	
ROADWAY TOTAL				\$4,128,175			\$14,857,77.	
STRUCTURE ITEMS								
Tieback Walls	LS	1	\$26,400,000	\$26,400,000				
10% Mobilization	ea	1	\$2,640,000	\$2,640,000				
Tieback Walls and Slope Stressing	LS				1	\$14,233,000	\$14,233,00	
10% Mobilization	ea				1	\$1,423,000	\$1,423,00	
STRUCTURE SUBTOTAL				\$29,040,000			\$15,656,00	
STRUCTURE MARK-UP	25%			\$7,260,000			\$3,914,00	
VA ADDED MARK-UP								
STRUCTURE TOTAL				\$36,300,000			\$19,570,00	
RIGHT-OF-WAY ITEMS								
Right-of-Way Acquisition		1	\$370,000	\$370,000				
Right-of-Way					7	\$180,000	\$1,283,40	
Relocation Assistance	<u> </u>							
Demolition								
Title and Escrow Fees	<u> </u>						<i>a</i>	
RIGHT-OF-WAY TOTAL				\$370,000			\$1,283,40	
ENVIRONMENTAL MITIGATION ITEMS		1	\$80,000	\$80,000				
CADITAL OUTLAN CURRORT PERMO	acre		+ ,	+-0,000	7	\$75,000	\$534,75	
CAPITAL OUTLAY SUPPORT ITEMS Reengineering and Redesign	0.1			\$4,087,818			\$2 624 50	
Project Engineering	0.1			\$ 4 ,087,818			\$3,624,59	
TOTAL				\$44,965,993			\$39,870,51	
TOTAL (Rounded)				\$44,966,000			\$39,871,00	
						SAVINGS	\$5,095,00	

VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans
TITLE: Retaining Wall with Localized Limited Slope Stressing	NUMBER D
 Team Member: Dan Adams I have reviewed this alternative and agree with it as it is written I have reviewed this alternative and suggest the following (or attached) changes 	

Team Member: Mike Eagan

I have reviewed this alternative and agree with it as it is writtenI have reviewed this alternative and suggest the following (or attached) changes

Team Member: Gary Garofalo

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Deborah Harmon

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Doug Jackson

 \blacksquare I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans
TITLE: Retaining Wall with Localized Limited Slope Stressing	NUMBER D
 Team Member: Jon Kaneshiro □ I have reviewed this alternative and agree with it as it is written ☑ I have reviewed this alternative and suggest the following (or attached) changes 	
Disagree with the advantage that states, "Achieves stability on the deep slide plane (but very	flittle)".

Team Member: Susan Morrison

 \square I have reviewed this alternative and agree with it as it is written

 \Box I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Aida Parkinson

 \square I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Michael Stapleton

 \blacksquare I have reviewed this alternative and agree with it as it is written

 \Box I have reviewed this alternative and suggest the following (or attached) changes

	VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization Cal			
FUNCTION:	Increase Stabilization	IDEA NO.	ALTERNATIVE NO. E	
TITLE:	Deep Slide Stabilization with Slope Stressing		PAGE NO. 1 of 7	
ORIGINAL Minor roadwa	CONCEPT: ay realignment and stabilize with a soldier pile tieback wall	s. (1995 PSR Altern	ative 2B)	

ALTERNATIVE CONCEPT:

On the Last Chance Grade, north and south sides, attempt to stabilize the deep slide plane (and at the same time the shallower debris flows) using slope stressing. This alternative is similar to Project Study Report Option 2A, except that slope stressing would occur upslope and downslope of the roadway with the goal of stabilizing both the near surface debris flows, but more importantly, the deep-seated slide plane.

Slope stressing is a slope repair method whereby the frictional forces resisting the slide are increased by the imposition of forces using subsurface stressed tieback tendons and at ground level reinforced concrete pads (to distribute the forces). In plan view, the slope stressing appear as horizontal rows, perhaps 20-40 feet apart, with concrete pads on the ground surface placed continuously, and tieback tendons through the pads in drilled holes, stressed and locked off, with the anchorage location being below the deep failure plane.

This alternative is not recommended because it goes outside the Caltrans right-of-way and results in unacceptable and substantial impact to old growth trees.

ADVANTAGES:

- Might improve stability on the deep-seated slide plane (enough to merit consideration)
- Improves maintainability of realigned roadway
- Improves roadway geometrics within the project limits

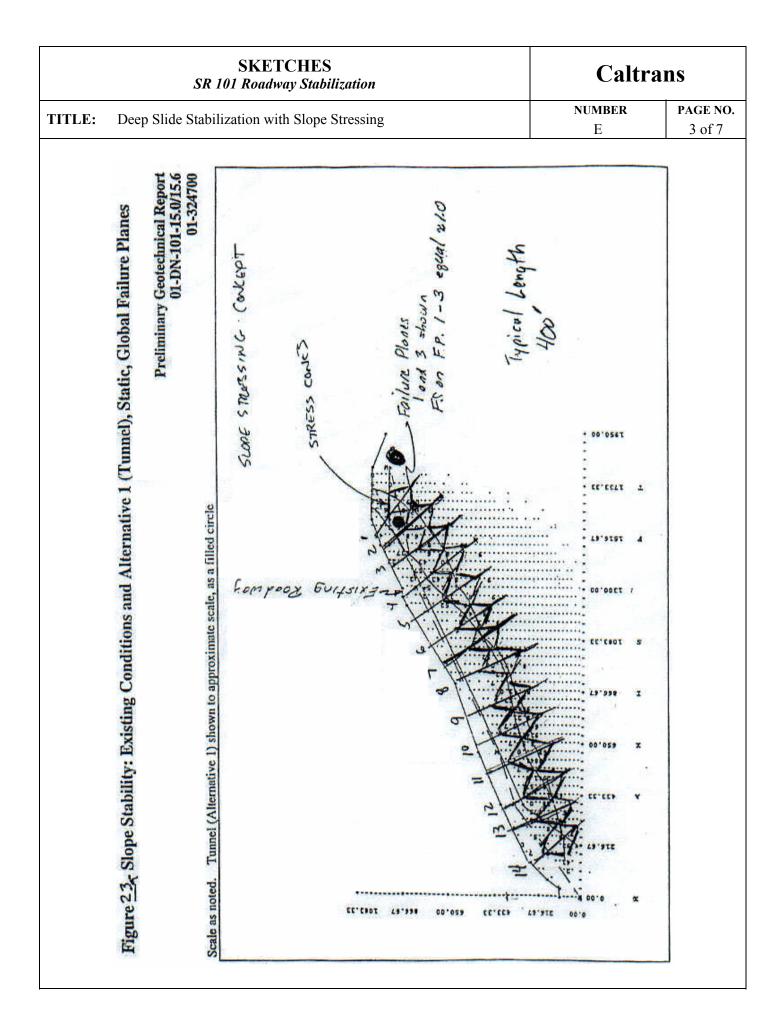
DISADVANTAGES:

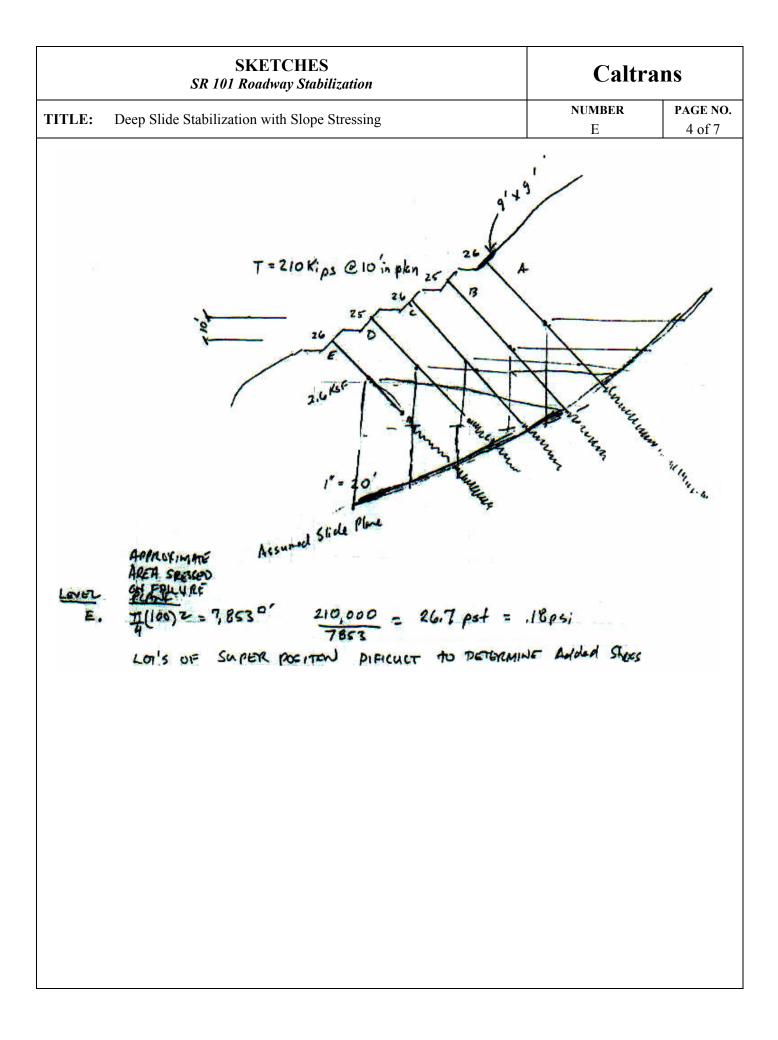
- Stability by this method is not fully assessed at this time
- Expensive construction
- Lengthy time to construct
- Large right-of-way take needed both upslope and downslope of the current roadway
- Issues regarding taking of trees downslope, where few redwoods are located, and upslope, where many redwoods are located

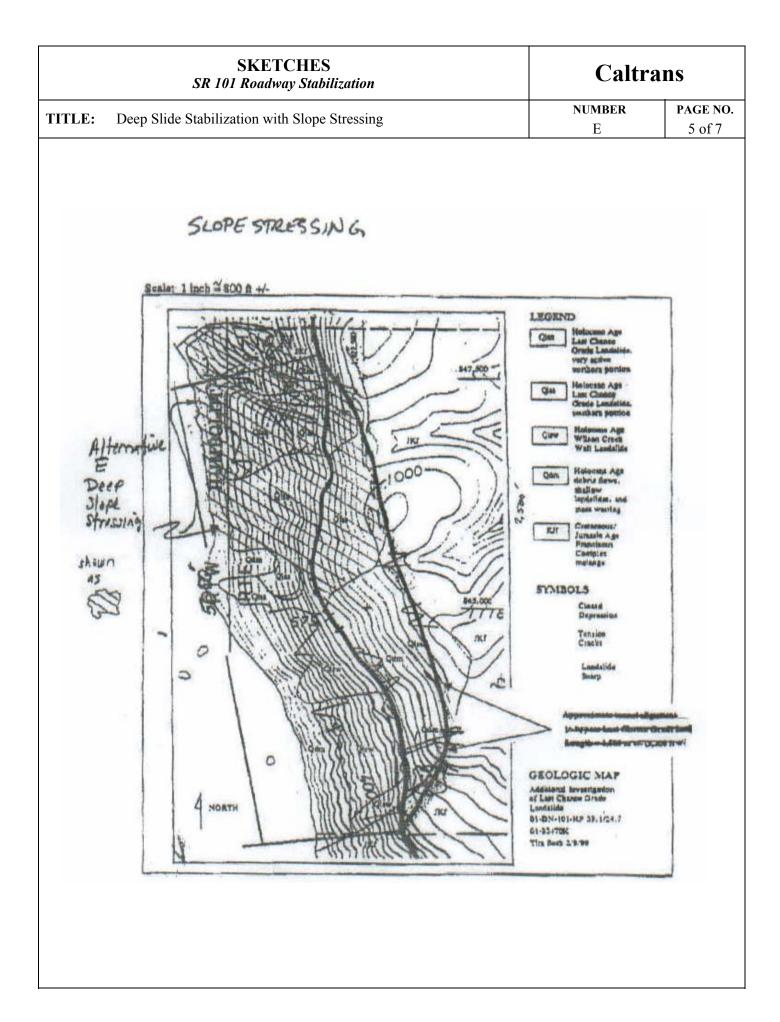
COST SUMMARY	Initial Cost	Present Value Subsequent Cost	Present Value ghway User Cost	Net Present Value
Original Concept	\$	\$	\$	\$
Alternative Concept	0,000,000 to 25,000,000	\$	\$	\$
Savings	\$	\$	\$	\$
Team Member: Gary Garofalo Jon Kaneshiro	Discipline:	Geotechnical	PERFORMANC	CE: -2.6

		VALUE ANALYSIS ALTERNATIVE SR 101 Roadway Stabilization	Caltra	ins
TITLE: Deep Slide Stabilization with Slope Stressing	TITLE:	Deep Slide Stabilization with Slope Stressing	ALTERNATIVE NO. E	PAGE NO. 2 of 7

DISCUSSION / JUSTIFICATION:


As most of the build options do not fully stabilize the slide (including under seismic events), an option that attempted to fully stabilize the slide was considered for comparison purposes. While not fully analyzed from the geotechnical viewpoint, this alternative was evaluated on the criteria established by the VA team.


TECHNICAL REVIEWER COMMENTS:


While not fully analyzed from the geotechnical viewpoint, this alternative was evaluated on the criteria established by the VA team.

Cost estimates under some quick analysis could be as low as \$80,000,000 to as high as \$125,000,000.

IMPLEMENTATION CONSIDERATIONS:

PERFORMANCE MEASURES SR 101 Roadway Stabilization	Caltran	IS	
TITLE: Deep Slide Stabilization with Slope Stressing	NUMBE E	RI	PAGE NO. 6 of 7
CRITERIA	Performance	Original	Alternative
Right-of-Way:	Measure	Degree	Degree
It is estimated that at least 14 large swathes parallel to the shoreline would be required below and above the roadway for the slope stressing – much acreage,	Rating	4	2
all in parkland (although fewer redwood trees exist downslope of roadway	Weight	29	29
than upslope).	Contribution 116 Measure Degree		58
Maintainability:	Measure	Degree	Degree
Improves on all counts (pending verification by further studies).	Rating	6	9
	Weight	24	24
	Contribution	144	216
Environmental Impact:	Measure	Degree	Degree
Poor – see discussion under right-of-way.	Rating	3	2
	Weight	17	17
	Contribution	51	34
Aesthetics:	Measure	Degree	Degree
Downslope there is a clear unobstructed view of the ocean, at a cost of removing trees. Unclone a large area of construction would exist. Some	Rating	6	3
Downslope there is a clear unobstructed view of the ocean, at a cost of removing trees. Upslope a large area of construction would exist. Some limitations on the type of trees that could be regrown in the immediate area	Weight	12	12
of slope stressing would be present.	Contribution	72	36
Roadway Geometrics:	Measure	Degree	Degree
Reduces the number of short reverse curves.	Rating	7	9
	Weight	9	9
	Contribution	63	81
Constructibility:	Measure	Degree	Degrees
Lengthy construction time, but could begin at several locations. Upslope there could be some excess material generated, but downslope would envision	Rating	2	3
as conforming to the topography, and excess material would be disposed of	Weight	9	9
onsite.	Contribution	18	27
Total Performance:	-	464	452
Net Change in Perform		-2.6%	

TITLE: Deep Slide Stabilization with Slope Stressing NUMBER E SLOPE STRESSING DATA E Caltrans 1.5 miles east of Mill Creek Bridge (Job 882; 1990, Mike Eagan Engineer of Record) Bids: \$1,181,000 to \$1,830,000. Engineer's Estimate: \$1,040,000 E Ditches, drains, debris, rocks, 5,450 feet of horizontal drains, benches, 128 tiebacks, 5 rows, 9-foo block footings, T = 210 kips, unbounded length 80', 80', 60', 45' = average of 68 lineal feet of slo horizontal, 50 foot vertical, 250 foot angled \$1.2 x 106 / 128 tiebacks = \$9.375/tieback (1.03)'' = 1.38 (inflection) SLOPE STRESSING DATA (INDEPENDENT CHECK)	
SLOPE STRESSING DATA Caltrans 1.5 miles east of Mill Creek Bridge (Job 882; 1990, Mike Eagan Engineer of Record) Bids: \$1,181,000 to \$1,830,000. Engineer's Estimate: \$1,040,000 Ditches, drains, debris, rocks, 5,450 feet of horizontal drains, benches, 128 tiebacks, 5 rows, 9-foo block footings, T = 210 kips, unbounded length 80', 80', 60', 45' = average of 68 lineal feet of slo horizontal, 50 foot vertical, 250 foot angled \$1.2 x 106 / 128 tiebacks = \$9.375/tieback (1.03)" = 1.38 (inflection)	ot x 9-foot
Caltrans 1.5 miles east of Mill Creek Bridge (Job 882; 1990, Mike Eagan Engineer of Record) Bids: \$1,181,000 to \$1,830,000. Engineer's Estimate: \$1,040,000 Ditches, drains, debris, rocks, 5,450 feet of horizontal drains, benches, 128 tiebacks, 5 rows, 9-foo block footings, T = 210 kips, unbounded length 80', 80', 60', 45' = average of 68 lineal feet of slo horizontal, 50 foot vertical, 250 foot angled \$1.2 x 106 / 128 tiebacks = \$9.375/tieback (1.03)" = 1.38 (inflection)	
 Bids: \$1,181,000 to \$1,830,000. Engineer's Estimate: \$1,040,000 Ditches, drains, debris, rocks, 5,450 feet of horizontal drains, benches, 128 tiebacks, 5 rows, 9-foo block footings, T = 210 kips, unbounded length 80', 80', 60', 45' = average of 68 lineal feet of slo horizontal, 50 foot vertical, 250 foot angled \$1.2 x 106 / 128 tiebacks = \$9.375/tieback (1.03)" = 1.38 (inflection) 	
block footings, T = 210 kips, unbounded length 80', 80', 60', 45' = average of 68 lineal feet of slo horizontal, 50 foot vertical, 250 foot angled \$1.2 x 106 / 128 tiebacks = \$9.375/tieback (1.03)" = 1.38 (inflection)	
(1.03)" = 1.38 (inflection)	
SI ODE STDESSINC DATA (INDEDENDENT CHECK)	
SLOTE STRESSING DATA (INDELENDENT CHECK)	
PG&E's Belden Siphon	
Telephone memo – Rob White of PG&E = 310 kips 9 strands: maximum 125 feet, minimum 90 feet; cased entire length unbounded DBM estimate $2,200,000 (1993)$ 10 + 13 + 12 + 11 + 13 + 9 = 68, therefore $2,200,000/68 = 32,353Slope area: 200 feet high x 200 feet wide x 2,000 feet long; therefore 280 feet x 2000 feet = 560,0Length is twice for Caltrans project and the cost is 64,594 per tiebackInflation = 1.4775 (1.05 at 8 years)Cost = 95,594/tiebackTieback spacing is 90 feet$	000 ft ²
SLOPE STRESSING ONLY	
14 tiebacks per ±90 feet of slope per row Assume 5,000 lf of slope 5,000/90 = 56 tiebacks per row Total number of tiebacks = 784 \$95,600/tieback x 784 tiebacks = \$74, 950,000 Structures on without engineering, contingencies, roadway improvements, etc.	

	Caltrans		
	Deep Slide Stabilization with Slope Stressing	NUMBER	
TITLE:	(NOTE: This alternative was written after the VA Session; therefore, it has not been reviewed by the VA Team.)	Е	
	ber: Dan Adams e reviewed this alternative and agree with it as it is written e reviewed this alternative and suggest the following (or attached) changes		

Team Member: Mike Eagan

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Gary Garofalo

□ I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Deborah Harmon

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Doug Jackson

 \Box I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

VA TEAM ALTERNATIVE REVIEW SR 101 Roadway Stabilization	Caltrans
TITLE: Deep Slide Stabilization with Slope Stressing	NUMBER E
 Team Member: Jon Kaneshiro I have reviewed this alternative and agree with it as it is written I have reviewed this alternative and suggest the following (or attached) changes 	

Team Member: Susan Morrison

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Aida Parkinson

□ I have reviewed this alternative and agree with it as it is written

□ I have reviewed this alternative and suggest the following (or attached) changes

Team Member: Michael Stapleton

I have reviewed this alternative and agree with it as it is written
 I have reviewed this alternative and suggest the following (or attached) changes

Project Analysis

PROJECT ANALYSIS

SUMMARY OF ANALYSIS

The following analysis tools were used to study the project:

- Project Issues and Constraints
- Lessons Learned on Site Visit
- Cost Model
- Function Analysis / FAST Diagram
- Performance Criteria Matrix
- Performance Rating Matrix

The following items were identified and addressed by the VA team:

- The project is in a seismically active location; large earthquakes could be experienced
- There are numerous slip planes in the project area; some are shallow and others are deep seated
- Redwood takes are to be kept to an absolute minimum, if any
- The Save the Redwoods League is concerned about impacts to memorial groves in the vicinity of the project
- The VA Study is constrained to the current Caltrans right-of-way; only minor takes would be considered
- The Fish and Wildlife Service would have concerns about threatened and endangered species
- Del Norte County would have concerns about the road being closed and access to southern destinations
- The need for a Coastal Development Zone Permit is a concern
- Short- and long-term roadway stabilization

LESSONS LEARNED ON SITE VISIT

The following issues and concerns were listed by the VA team following the site visit:

- The roadway is in a very steep location
- Several stabilization structures have been installed in the project area
- Numerous Redwood trees are present in the area
- Right-of-way is quite narrow in some locations

COST MODEL

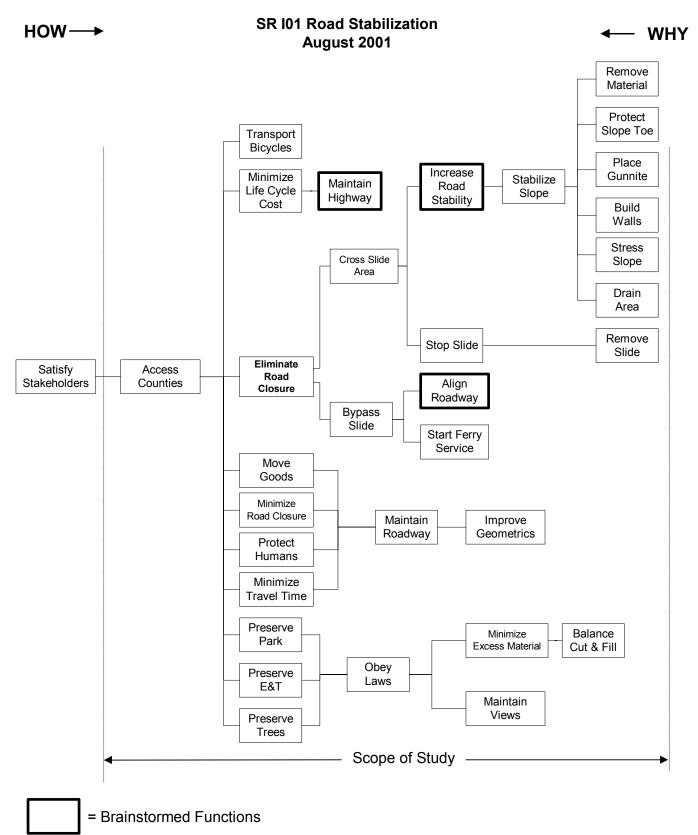
The VA team leader prepared a cost model from the designer's cost estimates. The model is organized to identify major construction elements or trade categories, the designer's estimated costs, and the percent of total project cost for the significant cost items.

The cost model clearly showed the cost drivers for the project, and they were used to guide the VA team during the VA Study.

- Structure items represent 81% of the project cost.
- Roadway items represent 9% of the project cost.

SR 101 Roadway Stabilization Preliminary Cost Estimate Summary

Section	Cost Element	Alt. 2B (adjusted)	% of Total
I.	ROADWAY ITEMS		
1.	Earthwork	\$540,000	
2.	Traffic Control	\$2,000,000	
3.	Class 1 Aggregate Subbase	\$115,000	
4.	Class 2 Aggregate Base	\$66,500	
5.	Asphalt Concrete	\$234,000	
6.	Other Roadway items	\$95,000	
	ROADWAY SUBTOTAL	\$3,050,500	
	Roadway Markup @ 35%	\$1,067,675	
	VA Added Markup	\$10,000	
	SUBTOTAL ROADWAY ITEMS	\$4,128,175	9.2%
II.	STRUCTURE ITEMS		
1.	Tieback Walls	\$26,400,000	
2.	Mobilization @ 10%	\$2,640,000	
	SUBTOTAL STRUCTURE ITEMS	\$29,040,000	
	Structure Markup @ 25%	\$7,260,000	
	SUBTOTAL STRUCTURES COST	\$36,300,000	80.7%
III.	ENVIRONMENTAL MITIGATION		
1.	Environmental Mitigation	\$80,000	
	SUBTOTAL ENVIRONMENTAL	\$80,000	
IV.	CAPITAL OUTLAY SUPPORT ITEMS		
1.	Reengineering and Redesign	\$4,087,818	
	SUBTOTAL ENVIRONMENTAL	\$4,087,818	9.1%
IV.	RIGHT OF WAY ITEMS	\$0	
1.	Right-of-Way Acquisition	\$370,000	
2.	Residential	\$0	
3.	Wetlands (3:1 Replacement)	\$0	
4.	Clearing/Removal	\$0	
5.	Utility Relocation	\$0	
	SUBTOTAL RIGHT OF WAY	\$370,000	0.8%
	TOTAL PROJECT COST	\$44,965,993	99.8%
	USE	\$44,966,000	


Function analysis was performed and a Function Analysis System Technique (FAST) Diagram was produced, which revealed the key functional relationships for the project. This analysis provided a greater understanding of the total project and how the issues, project cost, and function requirements are related.

The FAST diagram arranges the functions in logical order so that when read from left to right, the functions answer the question "How?" If the diagram is read from right to left, the functions answer the question "Why?" Functions connected with a vertical line are those that happen at the same time as, or are caused by, the function at the top of the column (a "When?" relationship).

The FAST Diagram for this project shows *Access Counties* as the basic function. Key secondary functions used for brainstorming were *Align Roadway, Increase Road Stability,* and *Maintain Highway.* In several cases the project costs and performance criteria associated with the functions have been identified. This enabled the team to determine the relationship between the project functions and cost, and to confirm that the performance criteria were being satisfied.

Analysis of the functions intended to be performed by the project helped the team focus on the purpose and need of the project and, consequently, how to craft alternative concepts that would provide the required functions.

FUNCTION ANALYSIS SYSTEM TECHNIQUE

The evaluative criteria matrix was used to determine the key evaluative criteria for the project. The VA team listed, with the assistance of the design team and stakeholders, the possible evaluative criteria that could be used to evaluate the creative ideas. These criteria were entered onto a matrix and compared in pairs, asking the question: "Which one is more important to the project?" The letter code (e.g., "a") was entered into the matrix for each pair. When all pairs were discussed they were tallied and percentages calculated. The highest scoring criteria were selected for use in the Evaluation Phase of the study.

The Performance Criteria Matrix is used to identify the relative importance or weight that the Performance Measures are given in the decision process. Following the Matrix are the definitions of the Performance Measure and the rating scale used for each Performance Measure.

PERFORMANCE CRITERIA MATRIX
SR 101 Roadway Stabilization

Caltrans

								TOTAL	%
Right-of-Way	Α	а	а	а	а	а	а	6.0	29%
Constructibilit	ty	В	b/c	b	b/e	f	g	2.0	10%
Envir	onmental Impacts		С	c	c	c	g	3.5	17%
	Disposal			D	e	f	g	0.0	0%
	Aesthet	ics			E	e	g	2.5	12%
		Roadwa	ay Geon	netrics		F	g	2.0	10%
			Mainta	inability	,		G	5.0	24%
a	More Important								

а	
a/b	

Equal Importance

100%

Criteria	Definition	Rating Scale
Right-of-Way	An approximate estimate of the amount of acres needed within park boundaries, the impact on the coastal trail, the impact on memorial groves, and possible Section 4f issues.	 10 – Less acreage is needed than the base case 9 – 8 – No additional right-of-way is needed 7 – 6 – Right-of-way needed in base case 5 – Minor additional right-of-way acreage is needed 4 – 3 – Some acreage needed 2 – 1 – Considerable acreage is needed
Maintainability	A measure of the alternative's impact on minimizing the frequency of road closures, the time needed to reopen the road, and deep slide stability.	 10 - Significantly improves and eases maintenance activities 9 - 8 - 7 - Slightly improves maintenance access; type of maintenance required no different than for existing facility 6 - Access and type of maintenance required are comparable to existing facility 5 - Slightly degrades maintenance access; type of maintenance required no different than for existing facility 4 - Significantly degrades maintenance access; type of maintenance required no different than for existing facility 3 - Significantly more maintenance than existing facility 2 - Unacceptable access conditions 1 - Cannot be maintained

Environmental Impacts	An approximation of the concept's overall effect on the surrounding environment. This criterion could include the following areas: • Redwood Trees • Habitats • Threatened and Endangered Species	 10 - Some enhancement upon existing environmental conditions 9 - Minor improvement upon existing environmental conditions 8 - No environmental impacts 7 - Negligible degradation (does not require mitigation) 6 - Minor degradation (requires limited mitigation) 5 - Moderate degradation (requires significant mitigation in one area or limited mitigation in two) 4 - Moderate degradation (requires significant mitigation in two areas or limited mitigation in three) 3 - Major degradation (requires substantial mitigation in others) 2 - Major degradation (requires substantial mitigation in two areas and limited/significant mitigation in others) 1 - Severe degradation (requires substantial mitigation in multiple areas)
Aesthetics	A measure of how the concept will affect terrain and ocean views, vegetation, obstructed view travel time for a tunnel.	 10 - Some enhancement 9 - 8 - 7 - Little disruption 6 - Maintain present status, some disruption 5 - Minimal or no change in 4 - 3 - 2 - 1 - Considerable undesirable contrast or undesirable visual impacts
Roadway Geometrics	An approximation of how the concept will maintain the existing alignment, and meet truck length and non- motorized traffic needs.	 10 - Full compliance 9 - 8 - 7 - 6 - 5 - One major and one minor design exception 4 - 3 - 2 - 1 - Three major and two minor design exceptions

Constructibility	An approximation of the concept's overall effect on construction of the project. This criterion includes the following areas: • Construction Methods • Delays • Traffic Control • Storm Water Drainage	10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Some improvement over base case standard construction practices, common techniques and equipment used, no traffic delays Uses standard construction practices per the base case Some use of non typical construction practices Major difficulty in project construction Severe construction operations degradation, numerous change orders, complex construction methods and equipment needed, serious road closure events
------------------	--	--	--

The Performance Rating Matrix compares competing sets of alternatives by applying the weighted performance criteria in a matrix to yield value ratios. VA alternatives are compared to the original concept for the full range of criteria to reach a judgment about their technical feasibility, as well as their acceptability to stakeholders. The matrix is essential for understanding the relationship of cost, performance, and value of the original and VA concepts.

Using the performance criteria developed by the VA team, design team, and stakeholders, the design concepts were ranked on a scale of 1 to 10 and scored by multiplying the weightings. The resulting matrix (see following pages) gives total criteria and value ratio (criteria/cost) numbers.

The VA team, with the assistance of the design team and stakeholders, evaluated the performance of the current project presented in the design documents. The performance ratings for these are indicated on the matrix.

After development of VA alternatives, the VA team evaluated the performance of certain combinations, or sets, of VA alternatives. The results of this evaluation were listed under the baseline to illustrate the relative improvement or degradation to the project performance (compared to the baseline project).

The total performance ratio for each of the sets, as well as the original design, has been totaled and divided by their total costs. The resulting number has been identified as the value index (cost/performance ratio). The net change in the value index between the original design and the VA sets has been identified as a percent value improvement, and the rationale for the ratings is shown below.

The following pages include:

- Rationale for Rating of the Original Concept
- Rationale for Rating VA Alternative Sets
- Performance Rating Matrix VA Alternative Sets
- Rationale for Rating Accepted VA Alternatives
- Performance Rating Matrix Accepted VA Alternatives

Rationale for Change in Performance and Value – Proposed Alternatives

Performance Criteria	VA Set 1	VA Set 2					
Right-of-Way	Would require considerably less potential right-of-way takes than the base case because of one-third less retaining wall length.	Would require approximately one acre of parkland.					
Maintainability	Less retaining wall to maintain would be offset by the need for temporary areas to repair/clear slide damage.	Minimal change from the base case.					
Environmental Impacts	Considerably less environmental impact than the base case because less area is affected.	Minimal change from the base case.					
Aesthetics	Maintaining existing views would be offset by the addition of structures to the area.	Slight reduction from the base case because of the addition of a significant amount of retaining wall.					
Roadway Geometrics	Some reduction from the base case because there will be no improvement in the alignments. Some improvement to cyclists' use because of wider shoulder widths.	Slight improvement over the base case because of some increased road width.					
Constructibility	A small improvement because one- way traffic would be possible during retaining wall construction.	Some improvement related to one-lane traffic during soil nail wall installation would provide two-lane traffic during tieback wall construction.					

PERFORMANCE RATING MATRIX - Proposed Alternatives SR 101 Roadway Stabilization

Caltrans

a 1. 1	Unit of	Unit of	Criteria	<i>.</i>				Per	forma	nce Ra	ting									
Criteria	Measurement	Weight	Concept	1	2	3	4	5	6	7	8	9	10	Total Performance						
			No Build										10	290						
			Baseline				4							116						
Right-of-Way	Degree of Impact	29	VA Set 1								8			232						
			Alt B2 Revised					5						145						
			Bypass w/Tunnel							7				203						
			No Build	1							Ĭ			24						
			Baseline						6					144						
Maintainability	Degree of Impact	24	VA Set 1					5						120						
			Alt B2 Revised						6					144						
			Bypass w/Tunnel									9		216						
			No Build								8			136						
Environmental			Baseline			3								51						
Impacts	Degree of Impact	17	VA Set 1									9		153						
impacts			Alt B2 Revised						6					102						
				Bypass w/Tunnel						6					102					
	Degree of Impact								No Build					5						60
		12	Baseline						6					72						
Aesthetics			VA Set 1						6					72						
			Alt B2 Revised					5						60						
			Bypass w/Tunnel						6					72						
	Degree of Impact							No Build			3								27	
Roadway			Baseline							7				63						
Geometrics		Degree of Impact	Degree of Impact	Impact 9	VA Set 1						6		ľ			54				
Geometries			Alt B2 Revised								8			72						
									Bypass w/Tunnel									9		81
			No Build										10	90						
			Baseline		2									18						
Constructibility	Degree of Impact	9	VA Set 1				4							36						
			Alt B2 Revised				4							36						
			Bypass w/Tunnel								8			72						
														0						
														0						
														0						
														0						
														0						
				I								ļ								
						L				L										
					l															

OVERALL PERFORMANCE	Total Performance	Total Cost (\$ mil)	Value Index (Performance/Cost)	% Value Improvement	
No Build	627	\langle	\langle	$\left \right\rangle$	
Baseline	464	45	10.31	$\!$	
VA Set 1	667	6	111.17	978%	
Alt B2 Revised	559	36	15.53	51%	
Bypass with Tunnel	746	137	5.45	-47%	

Performance Criteria	Accepted VA Alternatives						
Right-of-Way	Would require approximately one acre of parkland.						
Maintainability	Minimal change from the base case.						
Environmental Impacts	Minimal change from the base case.						
Aesthetics	Slight reduction from the base case because of the addition of a significant amount of retaining walls.						
Roadway Geometrics	Slight improvement over the base case because of some increased road width.						
Constructibility	Some improvement related to one-lane traffic during soil nail wall installation would provide two-lane traffic during tieback wall construction.						

PERFORMANCE RATING MATRIX - Accepted Alternatives *SR 101 Roadway Stabilization*

Caltrans

Criteria	Unit of	Criteria Weight	Concept	Performance Rating								T (1 D C		
	Measurement			1	2	3	4	5	6	7	8	9	10	Total Performanc
			No Build										10	290
Right-of-Way Deg			Baseline				4							116
	Degree of Impact	29	Accepted Alt.								8		ĺ	232
Maintainability	Degree of Impact	24	No Build	1										24
			Baseline						6				1	144
			Accepted Alt.					5						120
		17	No Build								8			136
Environmental Impacts			Baseline			3								51
	Degree of Impact		Accepted Alt.									9		153
impacts														
		12	No Build					5						60
			Baseline						6					72
Aesthetics	Degree of Impact		Accepted Alt.						6					72
			No Build			3								27
Dist		rt 9	Baseline							7				63
Roadway Geometrics	Degree of Impact		Accepted Alt.						6					54
Geometrics													1	
			No Build										10	90
	Degree of Impact	9	Baseline		2								l l	18
Constructibility			Accepted Alt.				4							36
-								1			1		Î	
													1	
													Ì	
													1	
				1				1			1	1	Ī	
				1							Γ			

OVERALL PERFORMANCE	Total Performance	Total Cost (\$ mil)	Value Index (Performance/ Cost)	% Value Improvement
No Build	627	\langle	\langle	$\left\langle \right\rangle$
Baseline	464	45	10.31	\langle
Accepted VA Alternative 2.0	667	6	111.17	978%

Project Description

PROJECT DESCRIPTION

INTRODUCTION

The purpose of this project is to identify and propose recommendations to mitigate operational deficiencies currently experienced on SR 101 from PM 15.0 to 15.6. The purpose was also to consider deficiencies experienced in the longer segment from PM 12.5 to 15.6. The proposed work is required to assure that the roadway will remain open to vehicular traffic. The project was initiated as a result of joint concerns of Caltrans, the Del Norte County Transportation Commission, and the public. The proposed project would be funded under the HA42 (Protective Betterment) Program.

SR 101 is a major transportation route of interregional and interstate importance. It is considered the "lifeline" of the North Coast, providing the connection between the Northern California Coast and the populated San Francisco Bay Area to the south and Oregon to the north. SR 101 facilitates many important types of transportation, including tourism, emergency services, and transportation of goods to, from, and through the region. It is part of the National Highway System and is specified by ISTEA; it is also part of the Subsystem of Highways for Extra Legal Loads.

This segment of SR 101 has historically required significant maintenance efforts to avoid road closure. The longer segment (PM 12.5 to 15.6) has been subject to traffic control for approximately 1,000 hours per year (12% of the time) over the past 10 years. One road closure in the early 1970's claimed two lives. The District has expended an average of \$60,000 per year (average of 1991 to1995). During wet conditions, overnight settlement occurs, requiring inspection and sometimes repair of the roadway. The long-term results of the settlement are poor vertical alignment and a rough ride for the traveling public. The segment of the roadway in the project length (15.0 to 15.6) requires night monitoring during wet weather to provide timely response to abrupt settlement. It is anticipated that maintenance expenditures and the likelihood of another roadway closure would increase over time.

The section of SR 101 proposed for reconstruction is two-lane conventional highway with 3.66-meter (12-foot) wide lanes, and alignment is generally curvilinear. Vertical alignment is rolling, with a maximum grade of approximately 7%. The existing and future (2010) level of service is E.

This section of SR 101 was constructed on the west-facing flank of a 300-meter high (1,000-foot) ridge, bounded on the west by the Pacific Ocean and on the east by Wilson Creek. The project is surrounded by the Del Norte Coast Redwoods State Park boundaries. Existing right-of-way widths vary through out the project site.

PROJECT HISTORY

Stabilizing the roadway at Last Chance Grade (between PM 15.0 and 15.6) is a major project, which is expected to cost more than \$750,000. Projects exceeding \$750,000 are eligible for programming in the State Highway Operations and Protection Program (SHOPP). A SHOPP project can be rehabilitation, a protective betterment, or an operational improvement; it cannot be capacity increasing or a new facility. Capacity increasing and/or new facilities projects are eligible for programming in the State Transportation Improvement Program (STIP).

The original project encompassing the location at Last Chance Grade was referred to as the "Wilson Creek Bluffs" project and was initiated in 1987 to address nine areas of identified roadway instability. This project studied bypass alternatives between PM 12.5 and 16.5. An eastern bypass alternative was programmed in the 1992 STIP as a "long lead", not including construction funding. This was due in part to impacts to parklands and to old growth trees, and lack of support from regulatory agencies and conservancy groups. This project was un-programmed in 1993.

A Corridor Study on SR 101 was initiated following programming of the Wilson Creek Bluffs project in the 1992 STIP. The Corridor Study considered all of SR 101, but it focused primarily on the section from PM 12.5 to 22.5. This study considered the accumulative impacts to parklands and old growth trees from both the Wilson Creek Bluffs project and a separate bypass project being studied at Cushing Creek (between PM 20.5 and 22.5). The Corridor Study identified an alternative that would avoid all parklands. This alternative was determined to consist of a 17-mile bypass with a cost of \$580 million. Based upon the results of this study, the Wilson Creek Bluffs project was removed from the 1992 STIP (unprogrammed), and it was proposed to study SHOPP projects within the existing alignment that would address stabilizing the roadway. The section of SR 101 at Last Chance Grade was considered the highest priority due to the slide complex containing five of the nine unstable areas. Studies to address this area were initiated in 1993, and a Project Study Report was completed in February 1995.

The current PSR for this project was approved in February 1995. It is classified as a long-lead SHOPP project. It has four alternatives: (1) Realignment of the highway in a tunnel behind the slide plane; (2A) Minor roadway realignment with soldier pile tieback wall and slope stressing for stabilization; (2B) Minor roadway realignment with two soldier pile tieback walls for stabilization; and (3) A major retreat behind the slide plane. In an effort to ensure that the alternatives were feasible, a geotechnical study was initiated in mid-1998. Actual field investigations and engineering analyses were performed in 1999 and 2000. A final Geotechnical Report was prepared in May 2001. The geotechnical report concluded that the PSR Alternative 3, the major retreat, was the only alternative that could be expected to successfully address the deep-seated slide. Unfortunately, the impacts to parklands would be unacceptable.

The estimated project cost of the baseline PSR Alternative 2B, Minor roadway realignment and two shoulder pile tieback walls for stabilization is estimated at approximately \$45,000,000.

INFORMATION PROVIDED TO THE VA TEAM

The following documents were provided to the VA team for their use during the study:

- Project Study Report (01-DN-101-15.0/15.6) February 1995
- Preliminary Geotechnical Report, California Department of Transportation, May 31, 2001
- Aerial Photographs of the project area
- Other drawings and technical materials prepared by Caltrans

PROJECT CONSTRAINTS / PARADIGM SHIFTS

The following items were identified and addressed by the VA team:

- Stay within the Caltrans right-of-way
- Avoid impacts to trees
- Roadway maintainability
- Funding constrains are important to Caltrans
- Short- and long-term roadway stabilization issues

Idea Evaluation

IDEA EVALUATION

INTRODUCTION

The creative ideas generated by the VA team are carefully evaluated, and project-specific criteria are applied to each idea to assure an objective evaluation.

KEY EVALUATIVE CRITERIA

The VA team used the paired comparison method to prioritize the key evaluative criteria for this project:

- Right-of-Way
- Maintainability
- Environmental Impact
- Aesthetics
- Roadway Geometrics
- Constructibility

The team enlisted the assistance of the stakeholders and designers (when available) to develop these criteria so that the evaluation would reflect their specific requirements.

EVALUATION PROCESS

The VA team, as a group, generated and evaluated ideas on how to perform the various functions. The idea list was grouped by function. While ideas on the overall project were evaluated as a group, ideas relating to a specific technical discipline may have been evaluated by the responsible team member.

The team compared each of the ideas with the original concept for each of the key evaluative criteria to determine whether it was better than, equal to, or worse than the original concept. The team reached a consensus on the ranking of the idea. High-ranked ideas would be developed further; low-ranked ones would be dropped from further consideration.

IDEA EVALUATION FORMS

All of the ideas that were generated during the creative phase using brainstorming techniques were recorded on the following Idea Evaluation forms. These ideas were discussed and the advantages and disadvantages of each were listed.

	S					TION lizatio			Caltrans			
	Ideas		Perfo	ormai	nce C	riteri	a					
No.	ALIGN ROADWAY	R	М	Е	A	G	С	Advantages	Disadvantages	\$	Ranl	
AR-1	Through cut from PM 14.5 to 15.5	-2	+1	-2	-2	+1	+1	 Built on stable ground Increases ocean retreat buffer Can be built with conventional equipment and techniques Provides more opportunities for vista points Minimizes closures and delays during construction 	 Removes 275 old growth redwoods Requires high T&E mitigation costs Significant disposal issues and costs Requires significant parkland 	-	4/3	
AR-2	Construct 6,000-foot tunnel	-1	0	-1	+1	+1	-1	 Improves aesthetics Improves horizontal and vertical geometrics Minimizes tree impacts 	 Risk of catastrophic failure is not completely eliminated Substantial maintenance costs Increases possibility of road closures due to accidents Substantial disposal of material Difficult construction 		3	

Ranking Scale:	5 = Cost and Performance 2 = Cost and Performance	• .	4 = Cost or Performance 1 = Does not Meet Projec	▲	3 = Minor Improvements OS = Outside Project Scope
Evaluation Criteria:	Significant Improvement +2	2, +1, 0, -1, -2 Significat	nt Degradation	I/S = in Baseline Scope	NR = Not Rated
R = Right-of-Way	M = Maintainability	E = Environmental Impa	ets A = Aesthetic	s G = Geometrics	C = Constructibility

			A EV 1 Road						Caltrans		
	Ideas		Perfo	ormar	nce C	riteri	a			•	D 1
No.	ALIGN ROADWAY	R	Μ	Е	A	G	С	Advantages	Disadvantages	\$	Rank
AR-3	Use a Wilson Creek Alignment	-2	+1	-2	0	+2	+2	 Improves roadway geometrics Built on stable ground Constructed with conventional methods with balanced cut and fill Out of present corridor Possible reuse of SR 101 	 Difficult SWPPP Goes through parkland with substantial impacts to trees and T & E 	-	OS 4/1
AR-4	Put road on the top of the hill toward the east	-2	+1	-2	+1	-2	+1	• Built on stable ground	 Steep grade Outside right-of-way Numerous trees T&E 	-	OS 3
AR-5	Realign to the west, using side hill cut and fill								• Technically and physically infeasible		NR
AR-6	Realign to the west, using a viaduct								• Financially, technically, and physically infeasible		NR
AR-7	Suspension bridge over the slide area								• Financially, technically, and physically infeasible		NR

Ranking Scale:	5 = Cost and Performance 2 = Cost and Performance		4 = Cost or Performance 1 = Does not Meet Projec	1	3 = Minor Improvements OS = Outside Project Scope
Evaluation Criteria:	Significant Improvement +2	2, +1, 0, -1, -2 Significa	nt Degradation	I/S = in Baseline Scope	e NR = Not Rated
R = Right-of-Way	M = Maintainability	E = Environmental Impa	cts A = Aesthetic	s G = Geometrics	C = Constructibility

	S		A EV 1 Road						Caltrans		
	Ideas		Perfo	rmar	nce C	riteria	a			6	
No.	ALIGN ROADWAY	R	Μ	E	A	G	С	Advantages	Disadvantages	\$	Rank
AR-8	Realign roadway using retaining walls within right- of-way (Alternative 2B in 1995 PSR)	0	+1	0	0	+1	-1	 Does not take trees Improves vertical and horizontal alignment 	 Traffic delays Chance of failure during construction Does not stabilize the deep slide 	-	4
AR-9	Install a tramway								Impractical		NR
AR-10	Construct stacked roadways								 Impractical and technically infeasible 		NR
AR-11	Construct 6,000-foot twin long tunnels	-1	0	-1	+1	+1	0	 Redundant tunnel for emergencies Prevents head-on collisions 	 Risk of catastrophic failure is not completely eliminated Substantial maintenance costs Increases possibility of road closures due to accidents Substantial disposal of material 		OS 3
AR-12	Realign roadway using retaining walls and slope stressing (Alternative 2A from 1995 PSR)	-2	+1	-2	-1	+1	-1	 Improves vertical and horizontal alignment Improves the factor of safety for uphill shallow slides Maintains ocean views 	 Impact to trees 	-	OS 3
Ranking	2 = Cost and	d Perf	orman	ce Re	ductio	on		4 = Cost or Performance Impr 1 = Does not Meet Project Pur	pose and Need OS = Outside Pr	oject	Scope
Evaluati R = Right	е I			-			0	nificant Degradation I/S Impacts A = Aesthetics	= in Baseline Scope NR = G = Geometrics C = Cons		

						FION ilizatio			Caltrans	
	Ideas		Perfo	ormai	nce C	riteria	a			D 1
No.	ALIGN ROADWAY	R	Μ	E	A	G	С	Advantages	Disadvantages	\$ Rank
AR-13	Construct a cut and cover tunnel								• Technically infeasible	NR
AR-14	Install anchors attached to the reverse slope of the east hill to help support the roadway								• Technically infeasible	NR
AR-15	Use Wilson Creek Bypass alignment with a tunnel under the park	-2	+1	-2	0	+1		 Bypasses the unstable area Improves roadway geometrics Built on stable ground Constructed with conventional methods with balanced cut and fill Out of present corridor Possible reuse of SR 101 for Pacific Coast beneficiation 	• Needs right-of-way	 OS 3
AR-16	Construct a Wilson Creek to Enders Beach Jetty with a road on top	0	0	0	0	0			• Financially impractical	NR
AR-17	Install Bart-type tunnel								Impractical	NR
AR-18	Install avalanche-type debris sheds	0	0	0	0	0			• Does not meet purpose and need	NR
Ranking Evaluati	2 = Cost and	Perf	orman	ce Re	ducti	on	2 Sig	4 = Cost or Performance Impr 1 = Does not Meet Project Pur nificant Degradation I/S	pose and Need OS = Outside P	Scope
	t-of-Way M = Maintaina						-	I Impacts A = Aesthetics	G = Geometrics $C = Cor$	

			A EV 1 Road						Caltrans			
	Ideas		Perfo	rmai	nce C	riteria	a			6		
No.	ALIGN ROADWAY	R	Μ	E	A	G	С	Advantages	Disadvantages	\$	Rank	
AR-19	Install flexible wooden plank roadway								Impractical		NR	
AR-20	Install single-lane roadway with traffic control	+2	+1	0	+1	+1	+1	 Maintains roadway as is Creates wide shoulders Possibly easier implemented maintenance 	 Does not meet purpose and need – does not improve stability Reduces roadway capacity Politically unacceptable 	++	1	
AR-21	Install a pontoon-style bridge								Impractical		NR	
AR-22	Construct a South Fork Road bypass								 Does not meet purpose and need Goes through Redwood National Park 		NR	
AR-23	Use the Simpson Timber land for a bypass with a viaduct	-2	+2	-2	+1	+2	+2	 Avoids unstable area May open new vistas Conventional construction 	Takes some treesDoes not meet purpose and need	-	OS 4	

Ranking Scale:	5 = Cost and Performan 2 = Cost and Performan	The second se	4 = Cost or Performance 1 = Does not Meet Projec	L	3 = Minor Improvements OS = Outside Project Scope
Evaluation Criteria:	Significant Improvement	+2, +1, 0, -1, -2 Significar	nt Degradation	I/S = in Baseline Scope	e NR = Not Rated
R = Right-of-Way	M = Maintainability	E = Environmental Impac	ets A = Aesthetic	s G = Geometrics	C = Constructibility

			A EV 1 Road				n			Caltrans			
	Ideas		Perfo	rman	ce Cr	iteria					•		
No.	INCREASE STABILIZATION	R	M	Е	A	G	С		Advantages	Disadvantages	\$	Rank	
IS-1	Install horizontal water drains							•	See IS-11			-	
IS-2	Plant trees									• Does not meet purpose and		NR	
IS-3	Cut slope back to 2:1 toward the east without realignment	-2	0	-2	-2	+1	-2	•	Some improvement in stability on the deep slide	 need Significant tree removal Large disposal of excess Right-of-way impacts 	-	OS3	
IS-4	Remove and reengineer fill									 Requires lengthy road closure during construction 		NR	
IS-5	Use slope stressing uphill and downhill with some curve correction (used in combination with other slope stabilization measures; possible research funding)	-2	+1	-1	-1	+1	-1		Significant stability improvement Stays in existing alignment	 Construction outside the right-of-way Unproven at this scale Takes trees 	-	OS 4	
IS-6	Install "dolos" to stabilize toe of the slope with or without a buttress (combine with other measures)							•	See IS-24	 Impractical 		-	

Ranking Scale:	5 = Cost and Performan 2 = Cost and Performan	1	4 = Cost or Performance 1 = Does not Meet Proje	1	3 = Minor Improvements OS = Outside Project Scope
Evaluation Criteria:	Significant Improvement -	-2, +1, 0, -1, -2 Significa	nt Degradation	I/S = in Baseline Scop	e NR = Not Rated
R = Right-of-Way	M = Maintainability	E = Environmental Impa	cts A = Aestheti	cs G = Geometrics	C = Constructibility

		IDEA EV R 101 Roa			1		Caltrans	
	Ideas	Perf	ormance	Criteria	L			
No.	INCREASE STABILIZATION	R M	E	A G	С	Advantages	Disadvantages	\$ Rank
IS-7	Gunnite slopes					• See IS-11		-
IS-8	Install retaining walls that go past the deep slip plane						• Physically impracticable to construct to withstand forces related to the deep slide	NR
IS-9	Build a seawall					• See IS-6		-
IS-10	Use injection grouting						• Does not meet purpose and need	NR
IS-11	Install a major subterranean drainage system (this idea will be used in conjunction with other drainage ideas)						• Difficult to collect the water	NR
IS-12	Install deep under drains					• See IS-11		-
IS-13	Install slope drainage galleries					• See IS-11		-
IS-14	Install top to bottom drainage system					• See IS-11		-
	2 = Cost and	l Performa rovement	nce Reduc +2, +1,	ction	-	4 = Cost or Performance 1 = Does not Meet Projec icant Degradation pacts A = Aesthetic	et Purpose and Need OS = Outside I I/S = in Baseline Scope NR	

			A EV 1 Road				ı			Caltrans		
	Ideas		Perfo	rman	ce Cr	iteria						
No.	INCREASE STABILIZATION	R	М	E	A	G	С		Advantages	Disadvantages	\$	Rank
IS-15	Shotcrete slopes as needed							•	See IS-11			-
IS-16	Retaining walls at the toe of the slope							•	See IS-6			-
IS-17	Use maintenance walls that do not penetrate the deep slip plane	0	+1	0	0	+1	-1	*	Does not take trees Improved vertical and horizontal alignment Fundable	 Traffic Delays Chance of failure during construction Does not stabilize the deep slide 	++	4/3
IS-18	Remove slide and rebuild on stable ground							•	See IS-3	• Impossible to construct		-
IS-19	Install soil cement caissons with "H" piles									• Technically infeasible		
IS-20	Bench into the slope with realignment from top to bottom	-2	+1	-2	-2	+1	-2	• •	Improves stability Reduces storm slide material	 Takes many trees Significant right-of-way takes Denudes the landscape 	-	OS 3
IS-21	Use lightweight fill or tire stabilization system							٠	See IS-17			-
	2 = Cost and	l Perf rover	orman nent +	ce Red ⊦2, +1	uction ., O,	1 -1, -2	Sign		e	pose and Need OS = Outside = in Baseline Scope NF	Projec R = No	

IDEA EVALUATION SR 101 Roadway Stabilization								Caltrans			
	Ideas		Perfo	rman	ce Cr	iteria					
No.	INCREASE STABILIZATION	R	Μ	E	Α	G	С	Advantages	Disadvantages	\$	Rank
IS-22	Pour continuous slab on top of present pavement with grout port							◆ See IS-17	 Does not resist the horizontal slide component 		-
IS-23	Build a large buttress fill in the ocean and fill in with disposal material							♦ See IS-6			-
IS-24	Implement slope stabilization with various techniques (drainage, slope stressing, gunnite, reinforcing of toe of slope)	-2	+1	-2	-1	+1	-1	Improves stabilityIncreases project/facility life	 Constructibility Significant aesthetic and environmental impact 		OS 3

Ranking Scale:	5 = Cost and Performan 2 = Cost and Performan	r r	= Cost or Performance = Does not Meet Projec	3 = Minor Improvements OS = Outside Project Scope	
Evaluation Criteria:	Significant Improvement	+2, +1, 0, -1, -2 Significant	Degradation	I/S = in Baseline Scope	e NR = Not Rated
R = Right-of-Way	M = Maintainability	E = Environmental Impact	s A = Aesthetic	s G = Geometrics	C = Constructibility

IDEA EVALUATION SR 101 Roadway Stabilization									Caltrans		
	Ideas		Perfo	rman	ice Ci	riteria	ı				
No.	MAINTAIN HIGHWAY	R	М	E	A	G	С	Advantages	Disadvantages	\$	Rank
MH 1	No build; keep present maintenance program only	0	0	0	0	0	0	 No right-of-way takes Minimizes short-term costs 	 Occasional road closures Does not meet purpose and need 	++	1
MH 2	Use phased approach to install upgrades and test how well they work (a possible method to employ an option)										NR
MH 3	Continue low-level maintenance without walls							• See C-1			-
MH 4	Continue low-level maintenance and develop a contingency plan for a catastrophic event (outside scope and suggested follow- on alternative)							 See C-1 Reopen time should be minimized Minimize materials procurement time Early contact with stakeholders 			-
MH 5	Install toll roads to fund improvements								 Administratively not legal, no parallel public road 		NR

Ranking Scale:	5 = Cost and Performance 2 = Cost and Performance		4 = Cost or Performance 1 = Does not Meet Projec	1	3 = Minor Improvements OS = Outside Project Scope
Evaluation Criteria:	Significant Improvement +2	2, +1, 0, -1, -2 Significat	nt Degradation	I/S = in Baseline Scope	e NR = Not Rated
R = Right-of-Way	M = Maintainability	E = Environmental Impa	cts A = Aesthetic	s G = Geometrics	C = Constructibility

	IDEA EVALUATION SR 101 Roadway Stabilization									Caltrans		
	Ideas		Performance Criteria								Φ	
No.	MAINTAIN HIGHWAY	R	М	Е	Α	G		С	Advantages	Disadvantages	\$	Rank

MH 6 Lobby legislature deauthorize part of the park

Ranking Scale:	5 = Cost and Performanc 2 = Cost and Performanc	1	4 = Cost or Performance 1 = Does not Meet Projec	1	3 = Minor Improvements OS = Outside Project Scope
Evaluation Criteria:	Significant Improvement +	2, +1, 0, -1, -2 Significan	t Degradation	I/S = in Baseline Scope	e NR = Not Rated
R = Right-of-Way	M = Maintainability	E = Environmental Impac	ts A = Aesthetic	s G = Geometrics	C = Constructibility

Value Analysis Process

VALUE ANALYSIS PROCESS

INTRODUCTION

The Value Analysis process involves fifteen activities needed to accomplish a VA study, organized in three parts: Preparation, VA Study, and Report.

PREPARATION

Prior to the start of a VA study, the District VA Coordinator (DVAC) and Team Leader carry out the following three activities:

- Initiate Study Identify study project; define study goals; prepare draft study charter and Task Order Initiation Document.
- **Organize Study** Conduct preparation meeting; select team members; finalize study charter and Task Order Initiation Document.
- Prepare Data Collect and distribute data; prepare cost models; develop LCC model.

All of the information gathered prior to the VA Study is given to the team members for their use.

VA STUDY

There are ten activities carried out by the VA team during the performance of the study, organized in three segments:

Segment 1

- **Inform Team** Receive designer presentation; visit project site; develop performance criteria, evaluate baseline design.
- Analyze Functions Identify basic functions and cost drivers; prepare FAST diagram.
- Create Ideas List a large quantity of alternative ideas; use group/individual brainstorming.
- Evaluate Ideas Evaluate all ideas against performance criteria; rank all ideas.

Segment 2

- Develop Alternatives Develop high-ranked ideas into VA alternatives; measure performance.
- Critique Alternatives Review grouped alternatives for team consensus, technical viability.
- Present Alternatives Give informal presentation of alternatives; prepare preliminary report.

Segment 3

- Assess Alternatives Review alternatives; prepare draft implementation decisions.
- **Resolve Alternatives** Resolve dispositions; edit and revise alternatives; summarize results.
- **Present Results** Give formal presentation of accepted alternatives.

REPORT

Following the VA study, the Team Leader assembles all study documentation into the final report:

- **Publish Results** Prepare Final VA Study Report; distribute printed and electronic copies.
- **Close-Out Study** Resolve conditionally accepted alternatives; finalize VA Study Summary Report and performance measures; update Executive Summary and publish electronically.

The VA study is complete when the report is issued as a record of the VA team's analysis and development work, as well as the project development team's implementation dispositions for the alternatives.

Performance measures are integral to the VA process and are used throughout the VA Study. The following detailed discussion of the performance measures provides better clarification of how they are used within the VA process. A VA Activity Chart, which outlines the fifteen VA activities in more detail, follows the performance measures. The VA Study Agenda and Meeting Attendees sheet, which document the schedule and participants in the VA Study, are at the end of this section.

Caltrans VA Study Process

PREPARATION		 INITIATE STUDY Identify study project Define study goals Identify study roles and responsibilities Identify study dates and logistics Begin recruitment of team members Select Team Leader Prepare draft study charter 	 ORGANIZE STUDY Conduct pre-study meeting: Identify stakeholders, decision makers, and technical reviewers Validate team member qualifications and finalize selection Identify data collection Finalize study dates and logistics Update VA Study Charter 	 PREPARE DATA Collect and distribute data Develop construction cost models Develop highway user benefit LCC model 	
	Segment 1	 INFORM TEAM Review study activities and confirm reviewers Present design concept Present stakeholders' interests Review project issues and objectives Identify key functions and performance criteria Visit project site 4 	 ANALYZE FUNCTIONS Analyze project data Expand project functions Prepare FAST diagram Determine functional cost and performance drivers 	 CREATE IDEAS Focus on functions List all ideas Apply creativity and innovation techniques (group and individual) 	 EVALUATE IDEAS Apply key performance criteria Rate each idea List advantages and disadvantages Rank all ideas Assign alternatives for development
VA STUDY	Segment 2	 DEVELOP ALTERNATIVES Develop alternative concepts Prepare sketches and calculations Measure performance Estimate costs, LCC benefits/costs 	 CRITIQUE ALTERNATIVES VA Alternatives Technical Review VA Alternatives Team Consensus Review Update and reevaluate functions and performance measures (if necessary) Group and number alternatives Validate performance 9 	PRESENT ALTERNATIVES* > Present findings > Validate performance measure changes, if necessary > Document feedback > Confirm pending reviews > Prepare preliminary report * Interim presentation of study finding 10	ř
	Segment 3	 ASSESS ALTERNATIVES** Review preliminary report Assess alternatives for project acceptance Prepare draft implementation dispositions **Activities performed by PDT, Technical Reviewers, and Stakeholders 	 RESOLVE ALTERNATIVES Review implementation dispositions Resolve implementation actions with decision-makers and stakeholders Edit alternatives Revisit rejected alternatives, if needed 12 	 PRESENT RESULTS* Present results Obtain management approval on implemented alternatives Summarize performance, cost, and value improvements <i>Final presentation of</i> study results 13 	
REPORT		 PUBLISH RESULTS Document process and study results Incorporate all comments and implementation actions Distribute Final VA Report Distribute electronic report to HQ VA Branch Update VA Study Summary Report (VASSR) Provide HQ the Final VA Report in pdf format 	 CLOSE-OUT STUDY (if Conditionally Accepted Alternatives exist) Resolve Conditionally Accepted Alternatives Finalize VA Study Summary Report (VASSR) Finalize Performance Measures Finalize VA Report Executive Summary and provide electronically to HQ 		_

INTRODUCTION

Performance measures are an integral part of the Caltrans VA Process. It is important that they are well defined and agreed to by the stakeholders at the start of the VA Study, as they are used throughout the study to identify, evaluate, and document alternatives. They are used to report performance improvement at the conclusion of the study. The primary goal of Value Analysis is to improve project value. A simple way to think of value in terms of an equation is as follows:

Value = Performance ÷ Cost

Value analysis has traditionally been perceived as an effective means for reducing project costs. This paradigm only addresses one part of the value equation, oftentimes at the expense of overlooking the role that VA can play with regard to improving project performance. Project costs are fairly easy to quantify and compare through traditional estimating techniques. Performance is not so easily quantifiable.

The Caltrans VA Program has developed a unique methodology using a variety of techniques aimed at identifying, defining, and quantifying performance. Once this has been accomplished, the interrelationship between cost and performance can be quantified and compared in terms of how they contribute to overall value.

The direct and active involvement of the project's stakeholders is at the core of this process. The VA Team Leader will lead Caltrans and external stakeholders through the methodology, using the power of the process to distill subjective thought into an objective language that everyone can relate to and understand. The dialog that develops then forms the basis for the VA team's understanding of the performance requirements of the project, and to what degree the current design concept is meeting those requirements. From this baseline, the VA team can focus on developing alternative concepts that will quantify both performance and cost and contribute to overall project value.

The Caltrans approach to project performance yields the following benefits:

- Builds consensus among project stakeholders (especially those holding conflicting views)
- Develops a better understanding of a project's goals and objectives
- Develops a baseline understanding of how the project is meeting performance goals and objectives
- Identifies areas where project performance can be improved through the VA process
- Develops a better understanding of a VA alternative's effect on project performance
- Develops an understanding of the relationship between performance and cost in determining value
- Uses value as the basis of selecting the right project or design concept
- Provides decision makers with a means of comparing costs and performance (i.e., costs vs. benefits) in a way that can assist them in making better decisions.

METHODOLOGY

Application of the performance methodology consists of the following steps:

- 1) Define the major performance criteria
- 2) Determine the relative importance of the criteria
- 3) Establish the performance "baseline" for the original design
- 4) Evaluate the performance of the VA alternative concepts
- 5) Compare the performance ratings of alternative concepts to the "baseline" project

Step 1 – Determine the Major Performance Criteria

The VA Team Leader will initially request that representatives from Caltrans and external stakeholders identify the performance criteria that they feel are essential to meeting the overall need and purpose of the project. Usually four to eight criteria are selected. It is important that all potential criteria be thoroughly discussed. The information that comes out of this discussion will be valuable to both the VA team and Caltrans. It is important that the criteria be discretely defined and be quantifiable in some form. By quantifiable, it is meant that a useable scale must be delineated with values given on a scale of 1 to 10. A "1" indicates poor value, while a "10" indicates excellent value. In most cases, the vast majority of performance criteria that typically appear in Caltrans VA Studies have been standardized. This standardized list may be used "as is," or adopted with minor adjustments as required. Every effort should be made to make the ratings as objective as possible.

Step 2 – Determine the Relative Importance of the Criteria

Once the group has agreed upon the project's performance criteria, the next step is to determine their relative importance in relation to each other. This is accomplished through the use of an evaluative tool termed "Performance Criteria Matrix." This matrix compares the performance criteria in pairs, asking the question: "Which one is more important to the project?" A letter code (e.g., "a") is entered into the matrix for each pair, identifying which of the two is more important. If a pair of criteria is considered to be of essentially equal importance, both letters (e.g., "a/b") are entered into the appropriate box. This, however, should be discouraged, as it has been found that in practice a tie usually indicates that the pairs have not been adequately discussed. When all pairs have been discussed, the number of "votes" for each criterion is tallied and percentages (which will be used as weighted multipliers later in the process) are calculated. It is not uncommon for one criterion to not receive any "votes." If this occurs, the criterion is given a token "vote", as it made the list in the first place and should be given some degree of importance.

It is important for the VA Team Leader to remind the group that, as they evaluate each pair of criteria, they should think of performance trade-offs in hypothetical terms as they relate to the project's overall need and purpose. For instance, the VA Team Leader might state, "If we were considering a concept that would improve mainline operations, but at the expense of reducing access between the freeway and local streets, which criterion would be more critical in meeting the project's intended need and purpose?" The team should also be reminded that these performance criteria will be used to evaluate the merits of alternative concepts generated during the course of the VA Study. As such, the group should keep an open mind and base their evaluation on what is possible rather than what exists in terms of the current design concept.

Step 3 – Establish the Performance "Baseline" for the Original Design

The next step in the process is to evaluate how well the original design is addressing the project's performance criteria. This step establishes a "baseline" against which the VA alternative concepts are compared. The Performance Rating Matrix is used to assist the VA team in determining the performance ratings for the original design concept. The representatives from the Caltrans design team and external stakeholders next begin assigning a 1 to 10 rating for each of the criteria, using the definitions and scales developed in Step 1.

Once the 1 to 10 ratings for the various criteria have been established, their total performance should be calculated by multiplying each criterion's weight (which was developed in Step 2) by its rating. Once the total performance for each criterion has been determined, the original design's total performance is calculated by adding the scores for all of the criteria. The concept's total performance will be somewhere between 100 and 1,000 points. A concept scoring 1,000 would represent a hypothetically "perfect" design concept, with all performance criteria being addressed to their theoretical maximum. This numerical expression of the original design's performance forms the "baseline" against which all alternative concepts will be compared.

Step 4 – Evaluate the Performance of the VA Alternative Concepts

Once the performance baseline has been established for the original design concept, it is used to help the VA team develop performance ratings for individual VA alternative concepts as they are developed during the course of the VA study. The Performance Measures form is used to capture this information as alternative concepts are developed. This form allows a side-by-side comparison of the original design and VA alternative concepts to be performed.

It is important to consider the alternative concept's impact on the entire project, rather than on discrete components, when developing performance ratings for the alternative concept

Step 5 - Compare the Performance Ratings of Alternative Concepts to the "Baseline" Project

The last step in the process completes the Performance Rating Matrix that was initially used to develop the performance ratings for the original design concept. Using the same process as described for rating the original concept, the performance ratings developed for the VA alternative concepts are entered into the matrix, and the summary portion of the Performance Rating Matrix is completed. The summary provides details on net changes to cost, performance, and value, using the following calculations:

% Performance Improvement:	Δ Performance VA Alternative Set / Total Performance Original Concept.
Value Index:	Total Performance / Total Cost (in Millions)
% Value Improvement:	Δ Value Index VA Alternative Set / Value Index Original Concept

The rationale for the numerical rating change for each alternative is documented. The stakeholders are asked to validate the Performance Measures and rationale for ratings at the Implementation Meeting.

CONCLUSION

The development and integration of performance measurements into the value methodology employed on Caltrans studies has improved the effectiveness of the Value Analysis Program as applied to highway projects by providing a reliable, integrated method of measuring performance and, consequently, value. This in turn has allowed the program to more easily discuss implementation dispositions of alternatives, justify alternatives with cost increases, apply value analysis more effectively to projects in the earlier stages of project development, and to better capture input from participating project stakeholders.

VA STUDY AGENDA

SEGMENT 1 Tuesday, August 21 *Kick-Off Meeting*

8:30 - 10:30	Introductions, Project Presentation, Stakeholder Concerns Discussion
10:30 - 11:00	Performance Criteria Definition/Prioritization;
11:30 - 12:30	Rating of No-Build and Baseline
12:30 - 1:30	Lunch
1:30 - 5:00	Site Visit

Wednesday, August 22, 2001

8:30 - 9:00	Recap of Day 1
9:00 - 11:00	Function Analysis/FAST Diagram
11:00 - 11:30	Assign Costs to Functions
11:30 - 12:00	Creation of Ideas – Team Brainstorming
12:00 - 1:00	Lunch
1:00 - 2:00	Idea Creation (Continued)
2:00 - 2:30	Review VA Alternative Forms
2:30 - 4:30	Evaluation of Ideas

Thursday, August 23, 2001

8:30 - 11:30	Evaluation of Ideas
11:30 - 12:00	Lunch
1:00 - 4:00	Continue Idea Evaluation
4:00 - 4:30	Assign VA Alternatives to VA Team Members

Tuesday, August 28, 2001

8:30 - 9:00	Review Previous Week – Distribute Idea/Evaluation Lists
9:00 - 12:00	Alternative Development
12:00 - 1:00	Lunch
1:00 - 5:00	Alternative Development

Wednesday, August 29, 2001

8:00 - 12:30	Alternative Development
12:30 - 1:30	Lunch
1:30 - 3:30	Technical Review of VA Alternatives
3:30 - 5:00	Team Review of Alternatives

Thursday, August 30, 2001

9:00 - 10:00	Team Review of Alternatives
10:00 - 11:00	Team Prioritization and Evaluation of Alternatives by Sets
11:00 - 11:30	Prepare for Presentation
1:30 - 3:00	Presentation of VA Study Results to Management and Stakeholders

		MEETING ATTENDEES SR 101 Roadway Stabilization										Caltrans				
	August, 2001					200 2			DOGUTION	TEI	LEPHONE		FAX			
21	22	23	28	29	30	9/2 6	NAME	ORGANIZATION	POSITION		E-M	-MAIL				
W	N/	N	W		N	V		Value Management		970	242-5531	970	242-6784			
Х	Х	X	X	Х	Х	Х	Fred Kolano	Strategies, Inc.	Team Leader	fred@	vms-inc.com	1				
v	v	v	v	v		V	Der Adams	Caltrans Structures	Substructure Committee	916	227-8358					
Х	Х	Х	X	Х		Х	Dan Adams	Design	Chair	dan_t	_adams@dot	.ca.gov				
X		x x	V	X	X	Com: Constale	Caltrans	Castashuisel Engineen	916	227-7190	916	227-7244				
Λ	Λ	Λ	Λ	Λ	Λ	Λ	Gary Garofalo	Geotechnical	Geotechnical Engineer	gary_garofalo@dot.ca.gov			V			
X	X	X	X	X	X	X	CaltransDeborah HarmonEnvironment	Branch Chief	707	445-6416	707	441-5775				
Λ	Λ	Λ	Λ	Λ	Λ	Λ	Deboran Harmon	Planning	Branch Chief	deborah_harmon@dot.ca.gov			gov			
X	Х	x	X	v	v	v	Х	X		Mike Eagan	Caltrans Planning	Branch Chief	707	441-3937		
Λ	Λ	Λ	Λ	Λ	Λ		WIKE Eagaii	Cantraits Flamming	Branch Chief	mike_	_eagan@dot.c	a.gov				
X	Х	X	X	X	X		Jon Kaneshiro	Parsons ES	Tunnel Design	916	687-0400	916	687-0401			
Λ	Λ	Λ	Λ	Λ	Λ		Jon Kanesinio	Faisons ES	Tunner Design	jon.y.	kaneshiro@p	arsons.	com			
X	X	X	X	X	X	X	Susan Morrison	Del Norte Local Transportation	Director	707	465-3878	707	465-5518			
Λ	Λ	Λ	Λ	Λ	Λ	Λ	Susan Montson	Commission	Director	morri	son@delnorte	email.co	om			
X	x	X	X	x	x		Aida Parkinson	Redwood National/State	Environmental Specialist	707	882-7611 ext.5470	707	822-8904			
								Parks		aida_]	parkinson@n	ps.gov				
Х	Х	x	X	Х	X		Michael Stapleton	Caltrans	Project Engineer	707	445-6453	707	445-6651			
Λ			Λ	Λ		Wienaer Stapicton	Cartrans		mike_	_stapleton@d	ot.ca.go)V				

	MEETING ATTENDEES SR 101 Roadway Stabilization											Caltrans				
	I	Augus	t, 200	1		200 2					TE	LEPHONE		FAX		
21	22	23	28	29	30	9/2 6	NAME		ORGANIZATION	POSITION		E-M	AIL			
X	X	X	x	X	X		Doug Jackson	Construction Structures Redesign		825-0195	70 7	825-0754				
											doug- 707	jackson@dot.	ca.gov	441-5733		
Х	Х				Х	Х	Gary Banducci	Gary Banducci Caltrans Project Manger			banducci@do					
Х				x	x	X	Dennis McBride Caltrans		ans	Design Manger	707	441-5878				
												dennis_mcbride@dot.ca.gov				
Х					Х		Tim Boese	Caltrans – District 1		Leadworker Traffic	707	445-6689				
Λ					Λ		I IIII BOESE	Traff	ic Operations	Operations	timothy_l_boese@dot.ca.gov					
					X		Ilene Cooper	Frien Coun	ds of Del Norte ty							
								Del N	Jorte County Board	County Supervisor Local	707	464-7204	707	464-7663		
					Х	Х	David Finigan		pervisors	Transportation Commission	dfinig	gan@harborsic	le.com			
							1 1	Calif	ornia Trucking	Consultant Membership	707					
Х	Х				Х		Jerry Hanson		ciation	Services	jhans	en@xprs.net				
Х							Ruskin Hartley	Save Leag	the Redwoods ue	Conservation Planner	415	279-9100	707	279-9115		
X							Starr Kilian		ans – District 1	Right-of-Way Agent	707	445-6423	707	441-5870		
								Right	Right-of-Way		starr	kilian@dot.ca	gov			

	MEETING ATTENDEES SR 101 Roadway Stabilization										Caltrans		
	August, 2001				200 2		ORGANIZATION	POSITION	TELEPHONE FAX				
21	22	2 23 28 29 30		30	9/2 6	NAME	E-MAIL						

							MEETING A SR 101 Roadwa			Caltrans				
	August, 2001					200 2				TEI	LEPHONE		FAX	
21	22	23	28	29	30	9/2 6	NAME	ORGANIZATION	POSITION		E-M	AIL		
X					X		Ralph Martinelli	Caltrans – District 1 Traffic Operations	Traffic Safety Chief	707	445-6376	707	441-5626	
							_	Branch		ralph	ralph_martinelli@dot.ca.gov			
Х					Х	X	Ernie Perry	Del Norte County Community	Director	707	464-7254			
Λ					Λ	Λ	Ennereny	Development	Director	eperry@co.del-norte.ca.us				
					v	7				707	445-6377	707	441-3914	
					X		John Carson	Caltrans	Traffic Operations Chief	John_carson@dot.ca.gov				
								California Division		916	323-8553			
Х					Х		Chris Wills	of Mines and Geology	Senior Engineering Geologist	cwills@consrv.ca.gov			l	
Х					X		Oscar Vasquez	Caltrans	VA Coordinator	916	274-6111	916	274-5855	
Λ					Λ		Oscal vasquez	Califaits	VA Coordinator	oscar	_vasquez@do	t.ca.gov	,	
						V		C k		707	441-3994			
						Х	Bob Baker	Caltrans	Geotechnical Branch Chief	Bob_	baker@dot.ca	.gov		
					37	V				707	445-6445			
					Х	X	Rick Knapp	Caltrans – District 1	Director	Rick	_knapp@dot.c	a.gov	1	
					1				Deputy District Director –	707	445-6413	707	441-5869	
						X	Cheryl Willis	Caltrans – District 1	Planning	Chery	yl_willis@dot	.ca.gov	1	
									Deputy District Director –	707	445-6393	707	445-6626	
						X	Marty Van Zandt	Caltrans – District 1	Maintenance and Operations	Marti	n.van.zandt@	dot.ca.g	jov	

	MEETING ATTENDEES SR 101 Roadway Stabilization										Caltrans			
	August, 2001					200 2	NAME		DOCUTION	TE	TELEPHONE FA			
21	22	23	28	29	30	9/2 6	NAME	ORGANIZATION	POSITION		E-MA	AIL		
						N/	V Charlie Eiglden Calture District	Deputy District Director -	707	445-6490				
						Х	Charlie Fielder	Caltrans – District 1	Administration	Charlie_fielder@dot.c		ca.gov		
											· ·	•		
												i		

	MEETING ATTENDEES SR 101 Roadway Stabilization									Caltrans				
	1	August	t , 200 1	l		200 2				TEI	LEPHONE		FAX	
21	22	23	28	29	30	9/2 6	NAME	ORGANIZATION	POSITION	E-MAIL		IAIL		
											1	r	1	
												Γ	1	
													1	
													1	
													1	

Value Management Strategies, Inc.

ffices in Escondido, Oakland, and Oceanside, California, Portland, Oregon, and Grand Junction, Colorad

Value Management Strategies, Inc.

Value Analysis Report SR 101 ROADWAY STABILIZATION CALTRANS DISTRICT 01 – DEL NORTE COUNTY, CA

Value Management Strategies, Inc. Value Management Strategies, Inc.

Value Analysis Report SR 101 ROADWAY STABILIZATION CALTRANS DISTRICT 01 – DEL NORTE COUNTY, CA

Contract 53A0063 Task Order 204.183

October 2002 Contract 53A0063 Task Order 204.183

October 2002 Contract 53A0063 Task Order 204.183

October 2002

Contract 53A0063 Task Order 204.183

October 2002

Value Management Strategies, Inc.

